Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_292_a16, author = {George Tomanov}, title = {Properly discontinuous group actions on affine homogeneous spaces}, journal = {Informatics and Automation}, pages = {268--279}, publisher = {mathdoc}, volume = {292}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a16/} }
George Tomanov. Properly discontinuous group actions on affine homogeneous spaces. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 268-279. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a16/
[1] Abels H., Margulis G.A., Soifer G.A., “Semigroups containing proximal linear maps”, Isr. J. Math., 91 (1995), 1–30 | DOI | MR | Zbl
[2] Abels H., Margulis G.A., Soifer G.A., “On the Zariski closure of the linear part of a properly discontinuous group of affine transformations”, J. Diff. Geom., 60 (2002), 315–344 | MR | Zbl
[3] Abels H., Margulis G.A., Soifer G.A., “The linear part of an affine group acting properly discontinuously and leaving a quadratic form invariant”, Geom. dedicata, 153 (2011), 1–46 | DOI | MR | Zbl
[4] Abels H., Margulis G.A., Soifer G.A., The Auslander's conjecture for dimension less than 7, E-print, 2012, arXiv: 1211.2525v4 [math.GR]
[5] Auslander L., “The structure of complete locally affine manifolds”, Topology, 3, Suppl. 1 (1964), 131–139 | DOI | MR | Zbl
[6] Benoist Y., “Actions propres sur les espaces homogènes réductifs”, Ann. Math. Ser. 2, 144 (1996), 315–347 | DOI | MR | Zbl
[7] Benoist Y., “Propriétés asymptotic des groupes linéaires”, Geom. Funct. Anal., 7 (1997), 1–47 | DOI | MR | Zbl
[8] Benoist Y., Labourie F., “Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables”, Invent. math., 111 (1993), 285–308 | DOI | MR | Zbl
[9] Birkes D., “Orbits of linear algebraic groups”, Ann. Math. Ser. 2, 93 (1971), 459–475 | DOI | MR
[10] Borel A., Springer T.A., “Rationality properties of linear algebraic groups. II”, Tôhoku Math. J. Ser. 2, 20 (1968), 443–497 | DOI | MR | Zbl
[11] Bourbaki N., Groupes et algèbres de Lie. Chapitres VII, VIII, Éléments de mathématique, 38, Hermann, Paris, 1975
[12] Dekimpe K., Petrosyan N., “Crystallographic actions on contractible algebraic manifolds”, Trans. Amer. Math. Soc., 367 (2015), 2765–2786 | DOI | MR | Zbl
[13] Drumm T.A., “Fundamental polyhedra for Margulis space-times”, Topology, 31 (1992), 677–683 | DOI | MR | Zbl
[14] Drumm T.A., “Linear holonomy of Margulis space-times”, J. Diff. Geom., 38 (1993), 679–690 | MR | Zbl
[15] Drumm T.A., Goldman W.M., “Complete flat Lorentz 3-manifolds with free fundamental group”, Int. J. Math., 1 (1990), 149–161 | DOI | MR | Zbl
[16] Fried D., Goldman W.M., “Three-dimensional affine crystallographic groups”, Adv. Math., 47 (1983), 1–49 | DOI | MR | Zbl
[17] Goldman W.M., Hirsch M.W., “Affine manifolds and orbits of algebraic groups”, Trans. Amer. Math. Soc., 295 (1986), 175–198 | DOI | MR | Zbl
[18] Goldman W.M., Kamishima Y., “The fundamental group of a compact flat space form is virtually polycyclic”, J. Diff. Geom., 19 (1984), 233–240 | MR | Zbl
[19] Grunewald F., Margulis G., “Transitive and quasitransitive actions of affine groups preserving a generalized Lorentz-structure”, J. Geom. Phys., 5 (1988), 493–531 | DOI | MR | Zbl
[20] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Acad. Press, New York, 1978 | MR | Zbl
[21] Kobayashi T., “Discontinuous groups acting on homogeneous spaces of reductive type”, Representation theory of Lie groups and Lie algebras, Proc. Conf., Fuji Kawaguchiko (Japan), 1990, World Sci., Hackensack, NJ, 1992, 59–75 | MR | Zbl
[22] Kobayashi T., “A necessary condition for the existence of compact Clifford–Klein forms of homogeneous spaces of reductive type”, Duke Math. J., 67 (1992), 653–664 | DOI | MR | Zbl
[23] Kobayashi T., “Discontinuous groups and Clifford–Klein forms of pseudo-Riemannian homogeneous manifolds”, Algebraic and analytic methods in representation theory, Perspect. Math., 17, Ed. by B. Ørsted, H. Schlichtkrull, Acad. Press, San Diego, CA, 1997, 99–165 | MR | Zbl
[24] Lipsman R.L., “Proper actions and a compactness condition”, J. Lie Theory, 5 (1995), 25–39 | MR | Zbl
[25] Margulis G.A., “Free completely discontinuous groups of affine transformations”, Sov. Math. Dokl., 28:2 (1983), 435–439 | MR | MR | Zbl
[26] Margulis G.A., “Polnye affinnye lokalno ploskie mnogoobraziya so svobodnoi fundamentalnoi gruppoi”, Zap. nauch. sem. LOMI, 134 (1984), 190–205 | MR | Zbl
[27] Margulis G.A., On the Zariski closure of the linear part of a properly discontinuous group of affine transformations, Preprint, Princeton Univ., 1991
[28] Milnor J., “On fundamental groups of complete affinely flat manifolds”, Adv. Math., 25 (1977), 178–187 | DOI | MR | Zbl
[29] Prasad G., “$\mathbb R$-regular elements in Zariski dense subgroups”, Q. J. Math., 45 (1994), 541–545 | DOI | MR | Zbl
[30] Raghunathan M.S., Discrete subgroups of Lie groups, Ergeb. Math. Grenzgeb., 68, Springer, Berlin, 1972 | MR | Zbl
[31] Rosenlicht M., “On quotient varieties and the affine embedding of certain homogeneous spaces”, Trans. Amer. Math. Soc., 101 (1961), 221–223 | DOI | MR
[32] Selberg A., “On discontinuous groups in higher-dimensional symmetric spaces”, Contributions to function theory, Tata Inst. Fundam. Res., Bombay, 1960, 147–164 | MR
[33] Serre J.-P., “Cohomologie des groupes discrets”, Prospects in mathematics, Ann. Math. Stud., 70, Princeton Univ. Press, Princeton, NJ, 1971, 77–169 | MR
[34] Soifer G.A., “Affine crystallographic groups”, Proc. Third Siberian School on Algebra and Analysis, Irkutsk, 1989, Amer. Math. Soc. Transl. Ser. 2, 163, Ed. by L.A. Bokut', M. Hazewinkel, Yu.G. Reshetnyak, Amer. Math. Soc., Providence, RI, 1995, 165–170 | MR | Zbl
[35] Tits J., “Free subgroups in linear groups”, J. Algebra, 20 (1972), 250–270 | DOI | MR | Zbl
[36] Tomanov G., “The virtual solvability of the fundamental group of a generalized Lorentz space form”, J. Diff. Geom., 32 (1990), 539–547 | MR | Zbl
[37] Tomanov G.M., “On a conjecture of L. Auslander”, C. r. Acad. Bulg sci., 43:2 (1990), 9–12 | MR | Zbl