Properly discontinuous group actions on affine homogeneous spaces
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 268-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a real algebraic group, $H \leq G$ an algebraic subgroup containing a maximal reductive subgroup of $G$, and $\Gamma $ a subgroup of $G$ acting on $G/H$ by left translations. We conjecture that $\Gamma $ is virtually solvable provided its action on $G/H$ is properly discontinuous and $\Gamma \backslash G/H$ is compact, and we confirm this conjecture when $G$ does not contain simple algebraic subgroups of rank ${\geq }\,2$. If the action of $\Gamma $ on $G/H$ (which is isomorphic to an affine linear space $\mathbb A^n$) is linear, our conjecture coincides with the Auslander conjecture. We prove the Auslander conjecture for $n\leq 5$.
@article{TRSPY_2016_292_a16,
     author = {George Tomanov},
     title = {Properly discontinuous group actions on affine homogeneous spaces},
     journal = {Informatics and Automation},
     pages = {268--279},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a16/}
}
TY  - JOUR
AU  - George Tomanov
TI  - Properly discontinuous group actions on affine homogeneous spaces
JO  - Informatics and Automation
PY  - 2016
SP  - 268
EP  - 279
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a16/
LA  - en
ID  - TRSPY_2016_292_a16
ER  - 
%0 Journal Article
%A George Tomanov
%T Properly discontinuous group actions on affine homogeneous spaces
%J Informatics and Automation
%D 2016
%P 268-279
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a16/
%G en
%F TRSPY_2016_292_a16
George Tomanov. Properly discontinuous group actions on affine homogeneous spaces. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 268-279. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a16/

[1] Abels H., Margulis G.A., Soifer G.A., “Semigroups containing proximal linear maps”, Isr. J. Math., 91 (1995), 1–30 | DOI | MR | Zbl

[2] Abels H., Margulis G.A., Soifer G.A., “On the Zariski closure of the linear part of a properly discontinuous group of affine transformations”, J. Diff. Geom., 60 (2002), 315–344 | MR | Zbl

[3] Abels H., Margulis G.A., Soifer G.A., “The linear part of an affine group acting properly discontinuously and leaving a quadratic form invariant”, Geom. dedicata, 153 (2011), 1–46 | DOI | MR | Zbl

[4] Abels H., Margulis G.A., Soifer G.A., The Auslander's conjecture for dimension less than 7, E-print, 2012, arXiv: 1211.2525v4 [math.GR]

[5] Auslander L., “The structure of complete locally affine manifolds”, Topology, 3, Suppl. 1 (1964), 131–139 | DOI | MR | Zbl

[6] Benoist Y., “Actions propres sur les espaces homogènes réductifs”, Ann. Math. Ser. 2, 144 (1996), 315–347 | DOI | MR | Zbl

[7] Benoist Y., “Propriétés asymptotic des groupes linéaires”, Geom. Funct. Anal., 7 (1997), 1–47 | DOI | MR | Zbl

[8] Benoist Y., Labourie F., “Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables”, Invent. math., 111 (1993), 285–308 | DOI | MR | Zbl

[9] Birkes D., “Orbits of linear algebraic groups”, Ann. Math. Ser. 2, 93 (1971), 459–475 | DOI | MR

[10] Borel A., Springer T.A., “Rationality properties of linear algebraic groups. II”, Tôhoku Math. J. Ser. 2, 20 (1968), 443–497 | DOI | MR | Zbl

[11] Bourbaki N., Groupes et algèbres de Lie. Chapitres VII, VIII, Éléments de mathématique, 38, Hermann, Paris, 1975

[12] Dekimpe K., Petrosyan N., “Crystallographic actions on contractible algebraic manifolds”, Trans. Amer. Math. Soc., 367 (2015), 2765–2786 | DOI | MR | Zbl

[13] Drumm T.A., “Fundamental polyhedra for Margulis space-times”, Topology, 31 (1992), 677–683 | DOI | MR | Zbl

[14] Drumm T.A., “Linear holonomy of Margulis space-times”, J. Diff. Geom., 38 (1993), 679–690 | MR | Zbl

[15] Drumm T.A., Goldman W.M., “Complete flat Lorentz 3-manifolds with free fundamental group”, Int. J. Math., 1 (1990), 149–161 | DOI | MR | Zbl

[16] Fried D., Goldman W.M., “Three-dimensional affine crystallographic groups”, Adv. Math., 47 (1983), 1–49 | DOI | MR | Zbl

[17] Goldman W.M., Hirsch M.W., “Affine manifolds and orbits of algebraic groups”, Trans. Amer. Math. Soc., 295 (1986), 175–198 | DOI | MR | Zbl

[18] Goldman W.M., Kamishima Y., “The fundamental group of a compact flat space form is virtually polycyclic”, J. Diff. Geom., 19 (1984), 233–240 | MR | Zbl

[19] Grunewald F., Margulis G., “Transitive and quasitransitive actions of affine groups preserving a generalized Lorentz-structure”, J. Geom. Phys., 5 (1988), 493–531 | DOI | MR | Zbl

[20] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Acad. Press, New York, 1978 | MR | Zbl

[21] Kobayashi T., “Discontinuous groups acting on homogeneous spaces of reductive type”, Representation theory of Lie groups and Lie algebras, Proc. Conf., Fuji Kawaguchiko (Japan), 1990, World Sci., Hackensack, NJ, 1992, 59–75 | MR | Zbl

[22] Kobayashi T., “A necessary condition for the existence of compact Clifford–Klein forms of homogeneous spaces of reductive type”, Duke Math. J., 67 (1992), 653–664 | DOI | MR | Zbl

[23] Kobayashi T., “Discontinuous groups and Clifford–Klein forms of pseudo-Riemannian homogeneous manifolds”, Algebraic and analytic methods in representation theory, Perspect. Math., 17, Ed. by B. Ørsted, H. Schlichtkrull, Acad. Press, San Diego, CA, 1997, 99–165 | MR | Zbl

[24] Lipsman R.L., “Proper actions and a compactness condition”, J. Lie Theory, 5 (1995), 25–39 | MR | Zbl

[25] Margulis G.A., “Free completely discontinuous groups of affine transformations”, Sov. Math. Dokl., 28:2 (1983), 435–439 | MR | MR | Zbl

[26] Margulis G.A., “Polnye affinnye lokalno ploskie mnogoobraziya so svobodnoi fundamentalnoi gruppoi”, Zap. nauch. sem. LOMI, 134 (1984), 190–205 | MR | Zbl

[27] Margulis G.A., On the Zariski closure of the linear part of a properly discontinuous group of affine transformations, Preprint, Princeton Univ., 1991

[28] Milnor J., “On fundamental groups of complete affinely flat manifolds”, Adv. Math., 25 (1977), 178–187 | DOI | MR | Zbl

[29] Prasad G., “$\mathbb R$-regular elements in Zariski dense subgroups”, Q. J. Math., 45 (1994), 541–545 | DOI | MR | Zbl

[30] Raghunathan M.S., Discrete subgroups of Lie groups, Ergeb. Math. Grenzgeb., 68, Springer, Berlin, 1972 | MR | Zbl

[31] Rosenlicht M., “On quotient varieties and the affine embedding of certain homogeneous spaces”, Trans. Amer. Math. Soc., 101 (1961), 221–223 | DOI | MR

[32] Selberg A., “On discontinuous groups in higher-dimensional symmetric spaces”, Contributions to function theory, Tata Inst. Fundam. Res., Bombay, 1960, 147–164 | MR

[33] Serre J.-P., “Cohomologie des groupes discrets”, Prospects in mathematics, Ann. Math. Stud., 70, Princeton Univ. Press, Princeton, NJ, 1971, 77–169 | MR

[34] Soifer G.A., “Affine crystallographic groups”, Proc. Third Siberian School on Algebra and Analysis, Irkutsk, 1989, Amer. Math. Soc. Transl. Ser. 2, 163, Ed. by L.A. Bokut', M. Hazewinkel, Yu.G. Reshetnyak, Amer. Math. Soc., Providence, RI, 1995, 165–170 | MR | Zbl

[35] Tits J., “Free subgroups in linear groups”, J. Algebra, 20 (1972), 250–270 | DOI | MR | Zbl

[36] Tomanov G., “The virtual solvability of the fundamental group of a generalized Lorentz space form”, J. Diff. Geom., 32 (1990), 539–547 | MR | Zbl

[37] Tomanov G.M., “On a conjecture of L. Auslander”, C. r. Acad. Bulg sci., 43:2 (1990), 9–12 | MR | Zbl