Division algebras of prime degree with infinite genus
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 264-267

Voir la notice de l'article provenant de la source Math-Net.Ru

The genus $\mathbf {gen}(\mathcal D)$ of a finite-dimensional central division algebra $\mathcal D$ over a field $F$ is defined as the collection of classes $[\mathcal D']\in \mathrm {Br}(F)$, where $\mathcal D'$ is a central division $F$-algebra having the same maximal subfields as $\mathcal D$. For any prime $p$, we construct a division algebra of degree $p$ with infinite genus. Moreover, we show that there exists a field $K$ such that there are infinitely many nonisomorphic central division $K$-algebras of degree $p$ and any two such algebras have the same genus.
@article{TRSPY_2016_292_a15,
     author = {S. V. Tikhonov},
     title = {Division algebras of prime degree with infinite genus},
     journal = {Informatics and Automation},
     pages = {264--267},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a15/}
}
TY  - JOUR
AU  - S. V. Tikhonov
TI  - Division algebras of prime degree with infinite genus
JO  - Informatics and Automation
PY  - 2016
SP  - 264
EP  - 267
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a15/
LA  - ru
ID  - TRSPY_2016_292_a15
ER  - 
%0 Journal Article
%A S. V. Tikhonov
%T Division algebras of prime degree with infinite genus
%J Informatics and Automation
%D 2016
%P 264-267
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a15/
%G ru
%F TRSPY_2016_292_a15
S. V. Tikhonov. Division algebras of prime degree with infinite genus. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 264-267. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a15/