Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_292_a15, author = {S. V. Tikhonov}, title = {Division algebras of prime degree with infinite genus}, journal = {Informatics and Automation}, pages = {264--267}, publisher = {mathdoc}, volume = {292}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a15/} }
S. V. Tikhonov. Division algebras of prime degree with infinite genus. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 264-267. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a15/
[1] Amitsur S.A., “Generic splitting fields of central simple algebras”, Ann. Math. Ser. 2, 62 (1955), 8–43 | DOI | MR | Zbl
[2] Chernousov V.I., Rapinchuk A.S., Rapinchuk I.A., “On the genus of a division algebra”, C. r. Math. Acad. sci. Paris, 350:17–18 (2012), 807–812 | DOI | MR | Zbl
[3] Chernousov V.I., Rapinchuk A.S., Rapinchuk I.A., “The genus of a division algebra and the unramified Brauer group”, Bull. Math. Sci., 3:2 (2013), 211–240 | DOI | MR | Zbl
[4] Garibaldi S., Saltman D.J., “Quaternion algebras with the same subfields”, Quadratic forms, linear algebraic groups, and cohomology, Ed. by J.-L. Colliot-Thélène et al., Springer, New York, 2010, 225–238 | DOI | MR | Zbl
[5] Krashen D., McKinnie K., “Distinguishing division algebras by finite splitting fields”, Manuscr. math., 134:1–2 (2011), 171–182 | DOI | MR | Zbl
[6] Meyer J.S., “Division algebras with infinite genus”, Bull. London Math. Soc., 46:3 (2014), 463–468 | DOI | MR | Zbl
[7] Rapinchuk A.S., Rapinchuk I.A., “On division algebras having the same maximal subfields”, Manuscr. math., 132:3–4 (2010), 273–293 | DOI | MR | Zbl
[8] Rehmann U., Tikhonov S.V., Yanchevskiĭ V.I., “Prescribed behavior of central simple algebras after scalar extension”, J. Algebra, 351:1 (2012), 279–293 | DOI | MR | Zbl
[9] Saltman D.J., Lectures on division algebras, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl