On the congruence kernel for simple algebraic groups
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 224-254

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains several results about the structure of the congruence kernel $C^{(S)}(G)$ of an absolutely almost simple simply connected algebraic group $G$ over a global field $K$ with respect to a set of places $S$ of $K$. In particular, we show that $C^{(S)}(G)$ is always trivial if $S$ contains a generalized arithmetic progression. We also give a criterion for the centrality of $C^{(S)}(G)$ in the general situation in terms of the existence of commuting lifts of the groups $G(K_v)$ for $v\notin S$ in the $S$-arithmetic completion $\widehat {G}^{(S)}$. This result enables one to give simple proofs of the centrality in a number of cases. Finally, we show that if $K$ is a number field and $G$ is $K$-isotropic, then $C^{(S)}(G)$ as a normal subgroup of $\widehat {G}^{(S)}$ is almost generated by a single element.
@article{TRSPY_2016_292_a13,
     author = {Gopal Prasad and Andrei S. Rapinchuk},
     title = {On the congruence kernel for simple algebraic groups},
     journal = {Informatics and Automation},
     pages = {224--254},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a13/}
}
TY  - JOUR
AU  - Gopal Prasad
AU  - Andrei S. Rapinchuk
TI  - On the congruence kernel for simple algebraic groups
JO  - Informatics and Automation
PY  - 2016
SP  - 224
EP  - 254
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a13/
LA  - en
ID  - TRSPY_2016_292_a13
ER  - 
%0 Journal Article
%A Gopal Prasad
%A Andrei S. Rapinchuk
%T On the congruence kernel for simple algebraic groups
%J Informatics and Automation
%D 2016
%P 224-254
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a13/
%G en
%F TRSPY_2016_292_a13
Gopal Prasad; Andrei S. Rapinchuk. On the congruence kernel for simple algebraic groups. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 224-254. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a13/