On the congruence kernel for simple algebraic groups
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 224-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains several results about the structure of the congruence kernel $C^{(S)}(G)$ of an absolutely almost simple simply connected algebraic group $G$ over a global field $K$ with respect to a set of places $S$ of $K$. In particular, we show that $C^{(S)}(G)$ is always trivial if $S$ contains a generalized arithmetic progression. We also give a criterion for the centrality of $C^{(S)}(G)$ in the general situation in terms of the existence of commuting lifts of the groups $G(K_v)$ for $v\notin S$ in the $S$-arithmetic completion $\widehat {G}^{(S)}$. This result enables one to give simple proofs of the centrality in a number of cases. Finally, we show that if $K$ is a number field and $G$ is $K$-isotropic, then $C^{(S)}(G)$ as a normal subgroup of $\widehat {G}^{(S)}$ is almost generated by a single element.
@article{TRSPY_2016_292_a13,
     author = {Gopal Prasad and Andrei S. Rapinchuk},
     title = {On the congruence kernel for simple algebraic groups},
     journal = {Informatics and Automation},
     pages = {224--254},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a13/}
}
TY  - JOUR
AU  - Gopal Prasad
AU  - Andrei S. Rapinchuk
TI  - On the congruence kernel for simple algebraic groups
JO  - Informatics and Automation
PY  - 2016
SP  - 224
EP  - 254
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a13/
LA  - en
ID  - TRSPY_2016_292_a13
ER  - 
%0 Journal Article
%A Gopal Prasad
%A Andrei S. Rapinchuk
%T On the congruence kernel for simple algebraic groups
%J Informatics and Automation
%D 2016
%P 224-254
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a13/
%G en
%F TRSPY_2016_292_a13
Gopal Prasad; Andrei S. Rapinchuk. On the congruence kernel for simple algebraic groups. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 224-254. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a13/

[1] Agol I., Long D.D., Reid A.W., “The Bianchi groups are separable on geometrically finite subgroups”, Ann. Math. Ser. 2, 153 (2001), 599–621 | DOI | MR | Zbl

[2] Algebraic number theory, Proc. Instr. Conf., Univ. Sussex, Brighton (UK), 1965, 2nd ed., Ed. by J.W.S. Cassels, A. Fröhlich, London Math. Soc., London, 2010 | MR

[3] Bass H., Milnor J., Serre J.-P., “Solution of the congruence subgroup problem for $\mathrm {SL}_n$ ($n\geq 3$) and $\mathrm {Sp}_{2n}$ ($n\geq 2$)”, Publ. math. Inst. Hautes Étud. Sci., 33 (1967), 59–137 | DOI | MR | Zbl

[4] Bergelson V., Shapiro D.B., “Multiplicative subgroups of finite index in a ring”, Proc. Amer. Math. Sos., 116 (1992), 885–896 | DOI | MR | Zbl

[5] Borel A., Linear algebraic groups, Grad. Texts Math., 126, Springer, New York, 1991 | DOI | MR | Zbl

[6] Borel A., Tits J., “Groupes réductifs”, Publ. math. Inst. Hautes Étud. Sci., 27 (1965), 55–150 | DOI | MR

[7] Borel A., Tits J., “Homomorphismes “abstraits” de groupes algébriques simples”, Ann. Math. Ser. 2, 97 (1973), 499–571 | DOI | MR | Zbl

[8] Bourbaki N., Groupes et algèbres de Lie. Chapitres II, III, Éléments de mathématique, Hermann, Paris, 1972 ; Groupes et algèbres de Lie. Chapitres IV–VI, Éléments de mathématique, Hermann, Paris, 1968 | MR | Zbl

[9] Bushnell C.J., Henniart G., “On the derived subgroups of certain unipotent subgroups of reductive groups over infinite fields”, Transform. Groups., 7:3 (2002), 211–230 | DOI | MR | Zbl

[10] Clozel L., “Démonstration de la conjecture $\tau $”, Invent. math., 151 (2003), 297–328 | DOI | MR | Zbl

[11] Cohn P.M., “A presentation of $\mathrm {SL}_2$ for Euclidean imaginary quadratic number fields”, Mathematika, 15 (1968), 156–163 | DOI | MR | Zbl

[12] Demarche C., “Le défaut d'approximation forte dans les groupes linéaires connexes”, Proc. London Math. Soc. Ser. 3, 102 (2011), 563–597 | DOI | MR | Zbl

[13] Dixon J.D., The structure of linear groups, Van Nostrand Reinhold, London, 1971 | Zbl

[14] Dixon J.D., du Sautoy M.P.F., Mann A., Segal D., Analytic pro-$p$ groups, 2nd ed., Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[15] Gille P., “Le problème de Kneser–Tits”, Séminaire Bourbaki 2007/2008, Exp. 983, Astérisque, 326, Soc. math. France, Paris, 2009, 39–81 | MR

[16] Jacobson N., Lie algebras, Dover Publ., New York, 1979 | MR

[17] Jaikin-Zapirain A., Klopsch B., “Analytic groups over general pro-$p$ domains”, J. London Math. Soc. Ser. 2, 76 (2007), 365–383 | DOI | MR | Zbl

[18] Kazhdan D., “Some applications of the Weil representation”, J. anal. math., 32 (1977), 235–248 | DOI | MR | Zbl

[19] Liebeck M.W., Pyber L., “Finite linear groups and bounded generation”, Duke Math. J., 107:1 (2001), 159–171 | DOI | MR | Zbl

[20] Kneser M., “Normalteiler ganzzahliger Spingruppen”, J. reine angew. Math., 311–312 (1979), 191–214 | MR | Zbl

[21] Lubotzky A., “Free quotients and the congruence kernel of $\mathrm {SL}_2$”, J. Algebra, 77 (1982), 411–418 | DOI | MR | Zbl

[22] Lubotzky A., “Subgroup growth and congruence subgroups”, Invent. math., 119 (1995), 267–295 | DOI | MR | Zbl

[23] Lubotzky A., “Eigenvalues of the Laplacian, the first Betti number and the congruence subgroup problem”, Ann. Math. Ser. 2, 144 (1996), 441–452 | DOI | MR | Zbl

[24] Lubotzky A., “Finite presentations of adelic groups, the congruence kernel and cohomology of finite simple groups”, Pure Appl. Math. Q., 1:2 (2005), 241–256 | DOI | MR | Zbl

[25] Lubotzky A., Segal D., Subgroup growth, Birkhäuser, Basel, 2003 | MR | Zbl

[26] Margulis G.A., “Koogranichennye podgruppy v algebraicheskikh gruppakh nad lokalnymi polyami”, Funkts. analiz i ego pril., 11:2 (1977), 45–57 | MR | Zbl

[27] Mason A.W., Premet A., Sury B., Zalesskii P.A., “The congruence kernel of an arithmetic lattice in a rank one algebraic group over a local field”, J. reine angew. Math., 623 (2008), 43–72 | MR | Zbl

[28] Mel'nikov O.V., “The congruence kernel of the group $\mathrm {SL}_2(\mathbb Z)$”, Sov. Math. Dokl., 17 (1976), 867–870 | MR | Zbl

[29] Platonov V.P., “The problem of strong approximation and the Kneser–Tits conjecture for algebraic groups”, Math. USSR. Izv., 3 (1969), 1139–1147 | DOI | MR

[30] Platonov V.P., Rapinchuk A.S., “Abstraktnye svoistva $S$-arifmeticheskikh grupp i kongruents-problema”, Izv. RAN. Ser. mat., 56:3 (1992), 483–508 | MR | Zbl

[31] Platonov V.P., Rapinchuk A.S., Algebraic groups and number theory, Acad. Press, Boston, 1994 | MR | Zbl

[32] Platonov V.P., Sury B., “Adelic profinite groups”, J. Algebra., 193 (1997), 757–763 | DOI | MR | Zbl

[33] Prasad G., “Strong approximation for semi-simple groups over function fields”, Ann. Math. Ser. 2, 105 (1977), 553–572 | DOI | MR | Zbl

[34] Prasad G., “Elementary proof of a theorem of Bruhat–Tits–Rousseau and of a theorem of Tits”, Bull. Soc. math. France, 110 (1982), 197–202 | MR | Zbl

[35] Prasad G., Raghunathan M.S., “On the Kneser–Tits problem”, Comment. math. Helv., 60 (1885), 107–121 | DOI | MR

[36] Prasad G., Rapinchuk A.S., “Computation of the metaplectic kernel”, Publ. math. Inst. Hautes Étud. Sci., 84 (1996), 91–187 | DOI | MR | Zbl

[37] Prasad G., Rapinchuk A.S., “Irreducible tori in semisimple groups”, Int. Math. Res. Not., 2001:23 (2001), 1229–1242 | DOI | MR | Zbl

[38] Prasad G., Rapinchuk A.S., “Irreducible tori in semisimple groups (Erratum)”, Int. Math. Res. Not., 2002:17 (2002), 919–921 | DOI | MR | Zbl

[39] Prasad G., Rapinchuk A.S., “Developments on the congruence subgroup problem after the work of Bass, Milnor and Serre”, Collected papers of John Milnor. V. V: Algebra, Amer. Math. Soc., Providence, RI, 2010, 307–325

[40] Raghunathan M.S., “On the congruence subgroup problem”, Publ. math. Inst. Hautes Étud. Sci., 46 (1976), 107–161 | DOI | MR | Zbl

[41] Raghunathan M.S., “On the congruence subgroup problem. II”, Invent. math., 85 (1986), 73–117 | DOI | MR | Zbl

[42] Raghunathan M.S., “On the group of norm 1 elements in a division algebra”, Math. Ann., 279 (1988), 457–484 | DOI | MR | Zbl

[43] Raghunathan M.S., “The congruence subgroup problem”, Proc. Conf. on Algebraic Groups, Hyderabad (India), 1989, Manoj Prakashan, Madras, 1991, 465–494 | MR | Zbl

[44] Raghunathan M.S., Venkataramana T.N., “The first Betti number of arithmetic groups and the congruence subgroup problem”, Linear algebraic groups and their representations, Contemp. Math., 153, Amer. Math. Soc., Providence, RI, 1993, 95–107 | DOI | MR | Zbl

[45] Rajan C.S., Venkataramana T.N., “On the first cohomology of arithmetic groups”, Manuscr. math., 105 (2001), 537–552 | DOI | MR | Zbl

[46] Rapinchuk A.S., “Kongruents-problema dlya algebraicheskikh grupp i silnaya approksimatsiya v affinnykh mnogoobraziyakh”, DAN BSSR, 32:7 (1988), 581–584 | MR | Zbl

[47] Rapinchuk A.S., “On the congruence problem for algebraic groups”, Sov. Math. Dokl., 39:3 (1989), 618–621 | MR | Zbl

[48] Rapinchuk A.S., Combinatorial theory of arithmetic groups, Preprint 20(420), Inst. Math., Acad. Sci. BSSR, Minsk, 1990

[49] Rapinchuk A.S., Kongruents-problema dlya algebraicheskikh grupp, Dis. ... dokt. fiz.-mat. nauk, In-t matematiki AN BSSR, Minsk, 1990

[50] Rapinchuk A.S., “The congruence subgroup problem”, Algebra, $K$-theory, groups, and education: On the occasion of Hyman Bass's 65th birthday, Contemp. Math., 243, Ed. by T.Y. Lam, A.R. Magid, Amer. Math. Soc., Providence, RI, 1999, 175–188 | DOI | MR | Zbl

[51] Rapinchuk A.S., “The Margulis–Platonov conjecture for $\mathrm {SL}_{1,D}$ and 2-generation of finite simple groups”, Math. Z., 252 (2006), 295–313 | DOI | MR | Zbl

[52] Rapinchuk A.S., “Strong approximation for algebraic groups”, Thin groups and superstrong approximation, Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press, Cambridge, 2014, 269–298 | MR

[53] Rapinchuk A.S., Rapinchuk I.A., “Centrality of the congruence kernel for elementary subgroups of Chevalley groups of rank $>1$ over Noetherian rings”, Proc. Amer. Math. Soc., 139 (2011), 3099–3113 | DOI | MR | Zbl

[54] Rapinchuk A.S., Segev Y., “Valuation-like maps and the congruence subgroup property”, Invent. math., 144 (2001), 571–607 | DOI | MR | Zbl

[55] Rapinchuk A.S., Segev Y., Seitz G.M., “Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable”, J. Amer. Math. Soc., 15 (2002), 929–978 | DOI | MR | Zbl

[56] Riehm C., “The congruence subgroup problem over local fields”, Am. J. Math., 92 (1970), 771–778 | DOI | MR | Zbl

[57] Segev Y., “On finite homomorphic images of the multiplicative group of a division algebra”, Ann. Math. Ser. 2, 149 (1999), 219–251 | DOI | MR | Zbl

[58] Serre J.-P., “Le problème des groupes de congruence pour $\mathrm {SL}_2$”, Ann. Math. Ser. 2, 92 (1970), 489–527 | DOI | MR | Zbl

[59] Serre J.-P., Galois cohomology, Springer, Berlin, 1997 | MR | Zbl

[60] Springer T.A., Linear algebraic groups, 2nd ed., Birkhäuser, Boston, 1998 | MR | Zbl

[61] Stein M.R., “Surjective stability in dimension 0 for $K_2$ and related functors”, Trans. Amer. Math. Soc., 178 (1973), 165–191 | MR | Zbl

[62] Sury B., “Congruence subgroup problem for anisotropic groups over semilocal rings”, Proc. Indian Acad. Sci. Math. Sci., 101 (1991), 87–110 | DOI | MR | Zbl

[63] Swan R.G., “Generators and relations for certain special linear groups”, Adv. Math., 6 (1971), 1–77 | DOI | MR | Zbl

[64] Tits J., “Algebraic and abstract simple groups”, Ann. Math. Ser. 2, 80 (1964), 313–329 | DOI | MR | Zbl

[65] Tits J., “Classification of algebraic semisimple groups”, Algebraic groups and discontinuous groups, Proc. Symp. Pure Math., 9, Amer. Math. Soc., Providence, RI, 1966, 33–62 | DOI | MR

[66] Tits J., “Groupes de Whitehead de groupes algébriques simples sur un corps (d'après V.P. Platonov et al.)”, Séminaire Bourbaki 1976/1977, Exp. 505, Lect. Notes Math., 677, Springer, Berlin, 1978, 218–236 | DOI | MR

[67] Tomanov G., “On the congruence-subgroup problem for some anisotropic algebraic groups over number fields”, J. reine angew. Math., 402 (1989), 138–152 | MR | Zbl

[68] Tomanov G.M., “Congruence subgroup problem for groups of type $G_2$”, C. r. Acad. Bulg. sci., 42:6 (1989), 9–11 | MR | Zbl

[69] Turnwald G., “Multiplicative subgroups of finite index in a division ring”, Proc. Amer. Math. Soc., 120 (1994), 377–381 | DOI | MR | Zbl

[70] Wallach N.R., “Square integrable automorphic forms and cohomology of arithmetic quotients of $SU(p,q)$”, Math. Ann., 266 (1984), 261–278 | DOI | MR | Zbl

[71] Zalesskii P.A., “Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic”, Izv. Math., 59 (1995), 499–516 | DOI | MR

[72] Zalesskii P.A., “Profinite surface groups and the congruence kernel of arithmetic lattices in $\mathrm {SL}_2(\mathbb R)$”, Isr. J. Math., 146 (2005), 111–123 | DOI | MR | Zbl

[73] Zel'manov E.I., “Solution of the restricted Burnside problem for groups of odd exponent”, Math. USSR. Izv., 36:1 (1991), 41–60 | DOI | MR | Zbl | Zbl

[74] Zel'manov E.I., “A solution of the restricted Burnside problem for 2-groups”, Math. USSR. Sb., 72:2 (1992), 543–565 | DOI | MR | Zbl | Zbl