Algebras of general type: Rational parametrization and normal forms
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 209-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every algebraically closed field $\boldsymbol k$ of characteristic different from $2$, we prove the following: (1) Finite-dimensional (not necessarily associative) $\boldsymbol k$-algebras of general type of a fixed dimension, considered up to isomorphism, are parametrized by the values of a tuple of algebraically independent (over $\boldsymbol k$) rational functions of the structure constants. (2) There exists an “algebraic normal form” to which the set of structure constants of every such algebra can be uniquely transformed by means of passing to its new basis—namely, there are two finite systems of nonconstant polynomials on the space of structure constants, $\{f_i\}_{i\in I}$ and $\{b_j\}_{j\in J}$, such that the ideal generated by the set $\{f_i\}_{i\in I}$ is prime and, for every tuple $c$ of structure constants satisfying the property $b_j(c)\neq 0$ for all $j\in J$, there exists a unique new basis of this algebra in which the tuple $c'$ of its structure constants satisfies the property $f_i(c')=0$ for all $i\in I$.
@article{TRSPY_2016_292_a12,
     author = {V. L. Popov},
     title = {Algebras of general type: {Rational} parametrization and normal forms},
     journal = {Informatics and Automation},
     pages = {209--223},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a12/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Algebras of general type: Rational parametrization and normal forms
JO  - Informatics and Automation
PY  - 2016
SP  - 209
EP  - 223
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a12/
LA  - ru
ID  - TRSPY_2016_292_a12
ER  - 
%0 Journal Article
%A V. L. Popov
%T Algebras of general type: Rational parametrization and normal forms
%J Informatics and Automation
%D 2016
%P 209-223
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a12/
%G ru
%F TRSPY_2016_292_a12
V. L. Popov. Algebras of general type: Rational parametrization and normal forms. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 209-223. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a12/

[1] Andreev E.M., Popov V.L., “O statsionarnykh podgruppakh tochek obschego polozheniya v prostranstve predstavleniya poluprostoi gruppy Li”, Funkts. analiz i ego pril., 5:4 (1971), 1–8 | MR

[2] Borel A., Linear algebraic groups, Grad. Texts Math., 126, 2nd ed., Springer, New York, 1991 | DOI | MR | Zbl

[3] Boularas D., “A new classification of planar homogeneous quadratic systems”, Qual. Theory Dyn. Syst., 2 (2001), 93–110 | DOI | MR | Zbl

[4] Bourbaki N., Algebra I. Chapters 1–3, Elements of Mathematics, Hermann, Paris, 1974 | MR | Zbl

[5] Bourbaki N., Algebra II. Chapters 4–7, Elements of Mathematics, Springer, Berlin, 1990 | MR | Zbl

[6] Durán Díaz R., Muñoz Masqué J., Peinado Domínguez A., “Classifying quadratic maps from plane to plane”, Linear Algebra Appl., 364 (2003), 1–12 | DOI | MR | Zbl

[7] Fulton W., Harris J., Representation theory: A first course, Grad. Texts Math., 129, Springer, New York, 1991 | MR | Zbl

[8] Higman D.G., “Indecomposable representations at characteristic $p$”, Duke Math. J., 21 (1954), 377–381 | DOI | MR | Zbl

[9] Muñoz Masqué J., Rosado María M.E., “Rational invariants on the space of all structures of algebras on a two-dimensional vector space”, Electron. J. Linear Algebra, 23 (2012), 483–507 | MR | Zbl

[10] Popov V.L., “An analogue of M. Artin's conjecture on invariants for nonassociative algebras”, Lie groups and Lie algebras: E.B. Dynkin's seminar, AMS Transl. Ser. 2, 169, Amer. Math. Soc., Providence, RI, 1995, 121–143 | MR | Zbl

[11] Popov V.L., “Rationality and the FML invariant”, J. Ramanujan Math. Soc., 28A, Spec. Iss. (2013), 409–415 | MR | Zbl

[12] Popov V.L., Vinberg E.B., “Invariant theory”, Algebraic geometry IV, Encycl. Math. Sci., 55, Springer, Berlin, 1994, 123–278

[13] Ralley T., “Decomposition of products of modular representations”, J. London Math. Soc., 44 (1969), 480–484 | DOI | MR | Zbl

[14] Reichstein Z., Vistoli A., “Birational isomorphisms between twisted group actions”, J. Lie Theory, 16:4 (2006), 791–802 | MR | Zbl

[15] Rosenlicht M., “Some basic theorems on algebraic groups”, Amer. J. Math., 78 (1956), 401–443 | DOI | MR | Zbl

[16] Saltman D.J., “Noether's problem over an algebraically closed field”, Invent. math., 77 (1984), 71–84 | DOI | MR | Zbl

[17] Schafer R.D., An introduction to nonassociative algebras, Acad. Press, New York, 1966 | MR | Zbl

[18] Serre J.-P., “Espaces fibrés algébriques”, Anneaux de Chow et applications: Sémin. C. Chevalley, 1958, Exp. 1, Secr. math., Paris, 1958, 1–37

[19] Speiser A., “Zahlentheoretische Sätze aus der Gruppentheorie”, Math. Z., 5 (1919), 1–6 | DOI | MR | Zbl

[20] Steinberg R., Conjugacy classes in algebraic groups, Lect. Notes Math., 366, Springer, Berlin, 1974 | MR | Zbl