Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_292_a12, author = {V. L. Popov}, title = {Algebras of general type: {Rational} parametrization and normal forms}, journal = {Informatics and Automation}, pages = {209--223}, publisher = {mathdoc}, volume = {292}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a12/} }
V. L. Popov. Algebras of general type: Rational parametrization and normal forms. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 209-223. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a12/
[1] Andreev E.M., Popov V.L., “O statsionarnykh podgruppakh tochek obschego polozheniya v prostranstve predstavleniya poluprostoi gruppy Li”, Funkts. analiz i ego pril., 5:4 (1971), 1–8 | MR
[2] Borel A., Linear algebraic groups, Grad. Texts Math., 126, 2nd ed., Springer, New York, 1991 | DOI | MR | Zbl
[3] Boularas D., “A new classification of planar homogeneous quadratic systems”, Qual. Theory Dyn. Syst., 2 (2001), 93–110 | DOI | MR | Zbl
[4] Bourbaki N., Algebra I. Chapters 1–3, Elements of Mathematics, Hermann, Paris, 1974 | MR | Zbl
[5] Bourbaki N., Algebra II. Chapters 4–7, Elements of Mathematics, Springer, Berlin, 1990 | MR | Zbl
[6] Durán Díaz R., Muñoz Masqué J., Peinado Domínguez A., “Classifying quadratic maps from plane to plane”, Linear Algebra Appl., 364 (2003), 1–12 | DOI | MR | Zbl
[7] Fulton W., Harris J., Representation theory: A first course, Grad. Texts Math., 129, Springer, New York, 1991 | MR | Zbl
[8] Higman D.G., “Indecomposable representations at characteristic $p$”, Duke Math. J., 21 (1954), 377–381 | DOI | MR | Zbl
[9] Muñoz Masqué J., Rosado María M.E., “Rational invariants on the space of all structures of algebras on a two-dimensional vector space”, Electron. J. Linear Algebra, 23 (2012), 483–507 | MR | Zbl
[10] Popov V.L., “An analogue of M. Artin's conjecture on invariants for nonassociative algebras”, Lie groups and Lie algebras: E.B. Dynkin's seminar, AMS Transl. Ser. 2, 169, Amer. Math. Soc., Providence, RI, 1995, 121–143 | MR | Zbl
[11] Popov V.L., “Rationality and the FML invariant”, J. Ramanujan Math. Soc., 28A, Spec. Iss. (2013), 409–415 | MR | Zbl
[12] Popov V.L., Vinberg E.B., “Invariant theory”, Algebraic geometry IV, Encycl. Math. Sci., 55, Springer, Berlin, 1994, 123–278
[13] Ralley T., “Decomposition of products of modular representations”, J. London Math. Soc., 44 (1969), 480–484 | DOI | MR | Zbl
[14] Reichstein Z., Vistoli A., “Birational isomorphisms between twisted group actions”, J. Lie Theory, 16:4 (2006), 791–802 | MR | Zbl
[15] Rosenlicht M., “Some basic theorems on algebraic groups”, Amer. J. Math., 78 (1956), 401–443 | DOI | MR | Zbl
[16] Saltman D.J., “Noether's problem over an algebraically closed field”, Invent. math., 77 (1984), 71–84 | DOI | MR | Zbl
[17] Schafer R.D., An introduction to nonassociative algebras, Acad. Press, New York, 1966 | MR | Zbl
[18] Serre J.-P., “Espaces fibrés algébriques”, Anneaux de Chow et applications: Sémin. C. Chevalley, 1958, Exp. 1, Secr. math., Paris, 1958, 1–37
[19] Speiser A., “Zahlentheoretische Sätze aus der Gruppentheorie”, Math. Z., 5 (1919), 1–6 | DOI | MR | Zbl
[20] Steinberg R., Conjugacy classes in algebraic groups, Lect. Notes Math., 366, Springer, Berlin, 1974 | MR | Zbl