Examples of algebraic groups of type $G_2$ having the same maximal tori
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 16-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Answering a question of A. Rapinchuk, we construct examples of non-isomorphic semisimple algebraic groups $H_1$ and $H_2$ of type $G_2$ having coherently equivalent systems of maximal $k$-tori.
@article{TRSPY_2016_292_a1,
     author = {C. Beli and P. Gille and T.-Y. Lee},
     title = {Examples of algebraic groups of type $G_2$ having the same maximal tori},
     journal = {Informatics and Automation},
     pages = {16--25},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a1/}
}
TY  - JOUR
AU  - C. Beli
AU  - P. Gille
AU  - T.-Y. Lee
TI  - Examples of algebraic groups of type $G_2$ having the same maximal tori
JO  - Informatics and Automation
PY  - 2016
SP  - 16
EP  - 25
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a1/
LA  - en
ID  - TRSPY_2016_292_a1
ER  - 
%0 Journal Article
%A C. Beli
%A P. Gille
%A T.-Y. Lee
%T Examples of algebraic groups of type $G_2$ having the same maximal tori
%J Informatics and Automation
%D 2016
%P 16-25
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a1/
%G en
%F TRSPY_2016_292_a1
C. Beli; P. Gille; T.-Y. Lee. Examples of algebraic groups of type $G_2$ having the same maximal tori. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 16-25. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a1/

[1] Arason J.K., Pfister A., “Beweis des Krullschen Durchschnittsatzes für den Wittring”, Invent. math., 12 (1971), 173–176 | DOI | MR | Zbl

[2] Beli N., Gille P., Lee T.-Y., “On maximal tori of algebraic groups of type $G_2$”, Pac. J. Math., 279 (2015), 101–134, arXiv: 1411.6808 [math.GR] | DOI | MR | Zbl

[3] Chernousov V.I., Rapinchuk A.S., Rapinchuk I.A., “The genus of a division algebra and the unramified Brauer group”, Bull. Math. Sci., 3 (2013), 211–240 | DOI | MR | Zbl

[4] Garibaldi S., Rapinchuk A., “Weakly commensurable $S$-arithmetic subgroups in almost simple algebraic groups of types $\mathsf B$ and $\mathsf C$”, Algebra Number Theory, 7 (2013), 1147–1178 | DOI | MR | Zbl

[5] Garibaldi S., Saltman D.J., “Quaternion algebras with the same subfields”, Quadratic forms, linear algebraic groups, and cohomology, Dev. Math., 18, Springer, New York, 2010, 225–238 | MR | Zbl

[6] Gille P., “Type des tores maximaux des groupes semi-simples”, J. Ramanujan Math. Soc., 19 (2004), 213–230 | MR | Zbl

[7] Gille P., “Sur la classification des schémas en groupes semi-simples”, Autour des schémas en groupes. III, Panoramas et Synthèses, Soc. math. France, Paris (to appear)

[8] Haile D.E., Knus M.-A., Rost M., Tignol J.-P., “Algebras of odd degree with involution, trace forms and dihedral extensions”, Isr. J. Math., 96 (1996), 299–340 | DOI | MR | Zbl

[9] Lam T.Y., Introduction to quadratic forms over fields, Grad. Stud. Math., 67, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[10] Lee T.-Y., “Embedding functors and their arithmetic properties”, Comment. math. Helv., 89 (2014), 671–717 | DOI | MR | Zbl

[11] Merkur'ev A.S., “Simple algebras and quadratic forms”, Math. USSR, Izv., 38 (1992), 215–221 | DOI | MR

[12] Meyer J.S., “Division algebras with infinite genus”, Bull. London Math. Soc., 46 (2014), 463–468 | DOI | MR | Zbl

[13] Morel F., “Milnor's conjecture on quadratic forms and mod 2 motivic complexes”, Rend. Semin. Mat. Univ. Padova, 114 (2005), 63–101 | MR | Zbl

[14] Orlov D., Vishik A., Voevodsky V., “An exact sequence for $K^M_*/2$ with applications to quadratic forms”, Ann. Math. Ser. 2, 165 (2007), 1–13 | DOI | MR | Zbl

[15] Prasad G., Rapinchuk A.S., “Weakly commensurable arithmetic groups and isospectral locally symmetric spaces”, Publ. math. Inst. Hautes Étud. Sci., 109 (2009), 113–184 | DOI | MR | Zbl

[16] Raghunathan M.S., “Tori in quasi-split-groups”, J. Ramanujan Math. Soc., 19 (2004), 281–287 | MR | Zbl

[17] Schémas en groupes (SGA 3), T. 1–3, Lect. Notes Math., 151–153, Ed. by M. Demazure, A. Grothendieck, Springer, Berlin, 1970

[18] Serre J.-P., Cohomologie galoisienne, Lect. Notes Math., 5, 5ème éd., Springer, Berlin, 1994 | MR | Zbl

[19] Springer T.A., Veldkamp F.D., Octonions, Jordan algebras and exceptional groups, Springer Monogr. Math., Springer, Berlin, 2000 | DOI | MR | Zbl