Fractal theory of Saturn's ring
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 95-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The true reason, in our opinion, for the partition of Saturn's ring as well as the rings of other planets into a large number of small subrings is found. This reason is clarified by the Zelikin–Lokutsievskiy–Hildebrand theorem about the fractal structure of solutions to generic piecewise smooth Hamiltonian systems. The instability of the two-dimensional model of the ring with continuous surface density of the distribution of particles is proved both for the Newton and Boltzmann equations. We do not claim that we have solved the problem of stability of Saturn's ring. We rather put questions and suggest some ideas and means for future research.
@article{TRSPY_2015_291_a8,
     author = {M. I. Zelikin},
     title = {Fractal theory of {Saturn's} ring},
     journal = {Informatics and Automation},
     pages = {95--111},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a8/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - Fractal theory of Saturn's ring
JO  - Informatics and Automation
PY  - 2015
SP  - 95
EP  - 111
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a8/
LA  - ru
ID  - TRSPY_2015_291_a8
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T Fractal theory of Saturn's ring
%J Informatics and Automation
%D 2015
%P 95-111
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a8/
%G ru
%F TRSPY_2015_291_a8
M. I. Zelikin. Fractal theory of Saturn's ring. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 95-111. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a8/

[1] Appel P., Figury ravnovesiya vraschayuscheisya odnorodnoi zhidkosti, ONTI, M., 1936

[2] Boltsman L., Lektsii po teorii gazov, Gostekhizdat, M., 1956

[3] Borisov V.F., Zelikin M.I., Manita L.A., “Optimalnyi sintez v beskonechnomernom prostranstve”, Tr. MIAN, 271 (2010), 40–58 | MR | Zbl

[4] Carleman T., Problèmes mathématiques dans la théorie cinetique des gaz, Almqvist Wiksells, Upsala, 1957 | MR

[5] Chapman S., Cowling T.G., The mathematical theory of non-uniform gases, Cambridge Univ. Press, Cambridge, 1939

[6] Couette M., “Études sur le frottement des liquides”, Ann. chim. phys., 21 (1890), 433–510

[7] Dobrushin R.L., “Uravneniya Vlasova”, Funkts. analiz i ego pril., 13:2 (1979), 48–58 | MR | Zbl

[8] Gibbs Dzh.V., Osnovnye printsipy statisticheskoi mekhaniki, izlagaemye so spetsialnym primeneniem k ratsionalnomu obosnovaniyu termodinamiki, Gostekhizdat, M.; L., 1946

[9] Grad H., “On the kinetic theory of rarefied gases”, Commun. Pure Appl. Math., 2 (1949), 331–407 | DOI | MR | Zbl

[10] Gorkavyi N.N., Fridman A.M., “Fizika planetnykh kolets”, UFN, 160:2 (1990), 169–237 | DOI

[11] Hildebrand R., Lokutsitvskiy L.V., Zelikin M.I., “Generic fractal structure of finite parts of trajectories of piecewise smooth Hamiltonian systems”, Russ. J. Math. Phys., 20:1 (2013), 25–32 | DOI | MR | Zbl

[12] Kirchhoff G., Vorlesungen über die Theorie der Wärme, B.G. Teubner, Leipzig, 1894

[13] Kupka I., “Fuller's phenomena”, Perspectives in Control Theory, Proc. Conf. Sielpia (Poland), 1988, Prog. Syst. Control Theory, 2, Birkhäuser, Boston, 1990, 129–142 | MR

[14] Laplace P.-S., “Mémoire sur la théorie de l'anneau de Saturne”, Hist. Acad. r. sci. 1789. Année, 1787, 249–267

[15] Lutsko J.F., “Chapman–Enskog expansion about nonequilibrium states with application to the sheared granular fluid”, Phys. Rev. E, 73 (2006), 021302 | DOI | MR

[16] Maxwell J.C., “On the stability of the motion of Saturn's rings”, The scientific papers of James Clerk Maxwell, V. 1, Univ. Press, Cambridge, 1890, 288–376

[17] Maxwell J.C., “On the dynamical theory of gases”, The scientific papers of James Clerk Maxwell, V. 2, Univ. Press, Cambridge, 1890, 26–78

[18] Poincaré H., “Note sur la stabilité de l'anneau de Saturne”, Bull. astron., 2 (1885), 507–508

[19] Puankare A., Figury ravnovesiya zhidkoi massy, RKhD, M.; Izhevsk, 2000

[20] Povzner A.Ya., “Ob uravnenii Boltsmana kineticheskoi teorii gazov”, Mat. sb., 58:1 (1962), 65–86 | MR | Zbl

[21] Lord Rayleigh., “On the dynamics of revolving fluids”, Proc. London R. Soc. A, 93 (1917), 148–154 | DOI

[22] Shalybkov D.A., “Gidrodinamicheskaya i gidromagnitnaya ustoichivost techeniya Kuetta”, UFN, 179:9 (2009), 971–993 | DOI

[23] Zommerfeld A., Termodinamika i statisticheskaya fizika, Izd-vo inostr. lit., M., 1955

[24] Ukai S., Yang T., Mathematical theory of Boltzmann equation, Lect. Notes, 6, City Univ. Hong Kong, Liu Bie Ju Centre Math. Sci., Hong Kong, 2006

[25] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994 | MR | Zbl

[26] Zelikin M.I., Lokutsievskii L.V., Khildebrand R., “Geometriya okrestnostei osobykh ekstremalei v zadachakh s mnogomernym upravleniem”, Tr. MIAN, 277 (2012), 74–90 | MR | Zbl

[27] Zelikin M.I., Lokutsievskii L.V., Khildebrand R., “Tipichnost fraktalno-khaoticheskoi struktury integralnykh voronok v gamiltonovykh sistemakh s razryvnoi pravoi chastyu”, Sovr. matematika. Fund. napr., 56 (2015), 5–128