On the uniqueness of a positive stationary state in the dynamics of a population with asymmetric competition
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 86-94

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonlinear model of the dynamics of a size-structured (exploited) population with asymmetric form of competition, we prove a uniqueness theorem for a positive stationary solution under sufficiently general assumptions on the parameters of the model.
@article{TRSPY_2015_291_a7,
     author = {A. A. Davydov and A. F. Nassar},
     title = {On the uniqueness of a positive stationary state in the dynamics of a population with asymmetric competition},
     journal = {Informatics and Automation},
     pages = {86--94},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a7/}
}
TY  - JOUR
AU  - A. A. Davydov
AU  - A. F. Nassar
TI  - On the uniqueness of a positive stationary state in the dynamics of a population with asymmetric competition
JO  - Informatics and Automation
PY  - 2015
SP  - 86
EP  - 94
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a7/
LA  - ru
ID  - TRSPY_2015_291_a7
ER  - 
%0 Journal Article
%A A. A. Davydov
%A A. F. Nassar
%T On the uniqueness of a positive stationary state in the dynamics of a population with asymmetric competition
%J Informatics and Automation
%D 2015
%P 86-94
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a7/
%G ru
%F TRSPY_2015_291_a7
A. A. Davydov; A. F. Nassar. On the uniqueness of a positive stationary state in the dynamics of a population with asymmetric competition. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 86-94. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a7/