On an asymptotic analysis problem related to the construction of an attainability domain
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 292-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of constructing and analyzing the properties of attainability domains play an important role in control theory and its applications. In particular, this applies to control under impulse constraints that reflect the energetics of a process. The situation is complicated by the possible instability of the process under variation (in particular, under relaxation) of constraints related to boundary and intermediate conditions. Stability of the problem is also missing, in general, under relaxation of state constraints. In these cases, it is natural to focus on the asymptotic variant of the statement; this is especially expedient when one has to deal with initially asymptotic requirements. In all these cases, it seems expedient to use analogs of J. Warga's approximate solutions. At the same time, to seek necessary approximate (and, in fact, asymptotic) solutions, it is natural to use generalized modes. For problems with impulse constraints and discontinuity in the coefficients of control actions, such modes lead to phenomena described by products of discontinuous functions and generalized functions even in the class of linear systems. In a large series of his studies, to overcome the arising difficulties, one of the authors used constructions of extension in the class of finitely additive measures. The present paper follows this approach and is ideologically relevant to the engineering problem of controlling the thrust of an engine under conditions of a given program of variation of its orientation; it is postulated that energy resources are completely consumed in a natural (for a number of impulse control problems) mode of short-duration impulses: the set of time instants at which the instantaneous control is different from zero can be embedded in an interval of vanishingly small length. Within these short periods of time, the engine should consume all energy resources while obeying some other constraints (making the sense of moment constraints) to a high degree of accuracy. In addition, one should take into account the possible discontinuity of the functions defining the coefficients of control actions. As a natural analog of the attainability domain, we use an attraction set, whose construction, together with the subsequent study of its main properties, constitutes the goal of the present study.
@article{TRSPY_2015_291_a21,
     author = {A. G. Chentsov and A. P. Baklanov},
     title = {On an asymptotic analysis problem related to the construction of an attainability domain},
     journal = {Informatics and Automation},
     pages = {292--311},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a21/}
}
TY  - JOUR
AU  - A. G. Chentsov
AU  - A. P. Baklanov
TI  - On an asymptotic analysis problem related to the construction of an attainability domain
JO  - Informatics and Automation
PY  - 2015
SP  - 292
EP  - 311
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a21/
LA  - ru
ID  - TRSPY_2015_291_a21
ER  - 
%0 Journal Article
%A A. G. Chentsov
%A A. P. Baklanov
%T On an asymptotic analysis problem related to the construction of an attainability domain
%J Informatics and Automation
%D 2015
%P 292-311
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a21/
%G ru
%F TRSPY_2015_291_a21
A. G. Chentsov; A. P. Baklanov. On an asymptotic analysis problem related to the construction of an attainability domain. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 292-311. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a21/

[1] Bhaskara Rao K.P.S., Bhaskara Rao M., Theory of charges: A study of finitely additive measures, Acad. Press, London, 1983 | MR | Zbl

[2] Burbaki N., Obschaya topologiya: Osnovnye struktury, Nauka, M., 1968 | MR

[3] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005

[4] Chentsov A.G., “K voprosu o korrektnom rasshirenii odnoi zadachi o vybore plotnosti veroyatnosti pri ogranicheniyakh na sistemu matematicheskikh ozhidanii”, UMN, 50:5 (1995), 223–242 | MR | Zbl

[5] Chentsov A.G., Finitely additive measures and relaxations of extremal problems, Plenum Publ., New York, 1996 | MR | Zbl

[6] Chentsov A.G., Asymptotic attainability, Kluwer, Dordrecht, 1997 | MR | Zbl

[7] Chentsov A.G., “K voprosu o korrektnom rasshirenii nekotorykh neustoichivykh zadach upravleniya s integralnymi ogranicheniyami”, Izv. RAN. Ser. mat., 63:3 (1999), 185–223 | DOI | MR | Zbl

[8] Chentsov A.G., “K voprosu o korrektnom rasshirenii nekotorykh neustoichivykh zadach obrabotki statisticheskoi informatsii”, Kibernetika i sist. analiz, 2001, no. 2, 110–131 | MR | Zbl

[9] Chentsov A.G., “Finitely additive measures and extensions of abstract control problems”, J. Math. Sci., 133:2 (2006), 1045–1206 | DOI | MR | Zbl

[10] Chentsov A.G., Elementy konechno-additivnoi teorii mery, T. 1, UGTU–UPI, Ekaterinburg, 2008; Т. 2, 2010

[11] Chentsov A.G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 2011, no. 1, 113–142 | Zbl

[12] Chentsov A.G., “Ultrafiltry izmerimykh prostranstv kak obobschennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 268–293 | MR | Zbl

[13] Chentsov A.G., “Ob odnom primere predstavleniya prostranstva ultrafiltrov algebry mnozhestv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 293–311

[14] Chentsov A.G., “Yarusnye otobrazheniya i preobrazovaniya na osnove ultrafiltrov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 298–314

[15] Chentsov A.G., “K voprosu o predstavlenii elementov prityazheniya v abstraktnykh zadachakh o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Izv. vuzov. Matematika, 2012, no. 10, 45–59 | MR | Zbl

[16] Chentsov A.G., “K voprosu o strukture mnozhestv prityazheniya v topologicheskom prostranstve”, Izv. In-ta matematiki i informatiki UdGU, 2012, no. 1, 147–150 | MR

[17] Chentsov A.G., “Mnozhestva prityazheniya v abstraktnykh zadachakh o dostizhimosti: ekvivalentnye predstavleniya i osnovnye svoistva”, Izv. vuzov. Matematika, 2013, no. 11, 33–50 | MR

[18] Chentsov A.G., “K voprosu o predstavlenii ultrafiltrov i ikh primenenii v konstruktsiyakh rasshirenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 289–307 | MR

[19] Chentsov A.G., “K voprosu o predstavlenii kompaktov Stouna”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 2013, no. 4, 156–174 | MR | Zbl

[20] Chentsov A.G., “O nekotorykh voprosakh struktury ultrafiltrov, svyazannykh s rasshireniyami abstraktnykh zadach upravleniya”, Avtomatika i telemekhanika, 2013, no. 12, 119–139 | MR | Zbl

[21] Chentsov A.G., “Ultrafiltry izmerimykh prostranstv i ikh primenenie v konstruktsiyakh rasshirenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 285–304 | MR

[22] Chentsov A.G., Baklanov A.P., “K voprosu o postroenii mnozhestva dostizhimosti pri ogranicheniyakh asimptoticheskogo kharaktera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 309–323 | MR

[23] Chentsov A.G., Morina S.I., Extensions and relaxations, Kluwer, Dordrecht, 2002 | MR | Zbl

[24] Danford N., Shvarts Dzh., Lineinye operatory: Obschaya teoriya, Izd-vo inostr. lit., M., 1962

[25] Elyasberg P.E., Vvedenie v teoriyu poleta iskusstvennykh sputnikov Zemli, Nauka, M., 1965

[26] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[27] Gamkrelidze R.V., Osnovy optimalnogo upravleniya, Izd-vo Tbil. un-ta, Tbilisi, 1977 | MR

[28] Kelli Dzh.L., Obschaya topologiya, Nauka, M., 1968

[29] Krasovskii N.N., Teoriya upravleniya dvizheniem: Lineinye sistemy, Nauka, M., 1968 | MR

[30] Krasovskii N.N., “Differentsialnaya igra sblizheniya–ukloneniya. I, II”, Izv. AN SSSR. Tekhn. kibernetika, 1973, no. 2, 3–18 ; no. 3, 22–42 | MR | MR

[31] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[32] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970 | MR

[33] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR

[34] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR

[35] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983 | MR

[36] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR