Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_291_a17, author = {M. S. Nikol'skii}, title = {On some properties of {Nash} equilibrium points in two-person games}, journal = {Informatics and Automation}, pages = {244--248}, publisher = {mathdoc}, volume = {291}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a17/} }
M. S. Nikol'skii. On some properties of Nash equilibrium points in two-person games. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 244-248. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a17/
[1] Fedorov V.V., Chislennye metody maksimina, Nauka, M., 1979 | MR
[2] Partkhasaratkhi T., Ragkhavan T., Nekotorye voprosy teorii igr dvukh lits, Mir, M., 1974
[3] Mulen E., Teoriya igr s primerami iz matematicheskoi ekonomiki, Mir, M., 1985 | MR
[4] Petrosyan L.A., Zenkevich N.A., Semina E.A., Teoriya igr, Vyssh. shk., M., 1998 | MR
[5] Vasin A.A., Morozov V.V., Teoriya igr i modeli matematicheskoi ekonomiki, MAKS Press, M., 2005
[6] Maschenko S.O., “Kontseptsiya ravnovesiya po Neshu i ee razvitie”, Zhurn. obchisl. ta prikl. matematiki., 2012, no. 1, 40–65
[7] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR
[8] Nikaidô H., Isoda K., “Note on noncooperative convex games”, Pac. J. Math., 5:5 (1955), 807–815 | DOI | MR
[9] Nikolskii M.S., “Priblizhennoe vychislenie tochek ravnovesiya po Neshu dlya igr dvukh igrokov”, Vestn. Mosk. un-ta. Ser. 15: Vychisl. matematika i kibernetika, 2014, no. 2, 25–29
[10] Antipin A., “Gradient approach of computing fixed points of equilibrium problems”, J. Global Optim., 24:3 (2002), 285–309 | DOI | MR | Zbl