On some properties of Nash equilibrium points in two-person games
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 244-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

In modern game theory, a lot of attention is paid to the concept of Nash equilibrium. The paper is devoted to the study of some properties of the set $\mathfrak A$ of Nash equilibrium points in two-person games. In particular, the character of possible complexity of the set $\mathfrak A$ is investigated, and the stability of the set $\mathfrak A$ under small perturbations of payoff functions is analyzed.
@article{TRSPY_2015_291_a17,
     author = {M. S. Nikol'skii},
     title = {On some properties of {Nash} equilibrium points in two-person games},
     journal = {Informatics and Automation},
     pages = {244--248},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a17/}
}
TY  - JOUR
AU  - M. S. Nikol'skii
TI  - On some properties of Nash equilibrium points in two-person games
JO  - Informatics and Automation
PY  - 2015
SP  - 244
EP  - 248
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a17/
LA  - ru
ID  - TRSPY_2015_291_a17
ER  - 
%0 Journal Article
%A M. S. Nikol'skii
%T On some properties of Nash equilibrium points in two-person games
%J Informatics and Automation
%D 2015
%P 244-248
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a17/
%G ru
%F TRSPY_2015_291_a17
M. S. Nikol'skii. On some properties of Nash equilibrium points in two-person games. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 244-248. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a17/

[1] Fedorov V.V., Chislennye metody maksimina, Nauka, M., 1979 | MR

[2] Partkhasaratkhi T., Ragkhavan T., Nekotorye voprosy teorii igr dvukh lits, Mir, M., 1974

[3] Mulen E., Teoriya igr s primerami iz matematicheskoi ekonomiki, Mir, M., 1985 | MR

[4] Petrosyan L.A., Zenkevich N.A., Semina E.A., Teoriya igr, Vyssh. shk., M., 1998 | MR

[5] Vasin A.A., Morozov V.V., Teoriya igr i modeli matematicheskoi ekonomiki, MAKS Press, M., 2005

[6] Maschenko S.O., “Kontseptsiya ravnovesiya po Neshu i ee razvitie”, Zhurn. obchisl. ta prikl. matematiki., 2012, no. 1, 40–65

[7] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[8] Nikaidô H., Isoda K., “Note on noncooperative convex games”, Pac. J. Math., 5:5 (1955), 807–815 | DOI | MR

[9] Nikolskii M.S., “Priblizhennoe vychislenie tochek ravnovesiya po Neshu dlya igr dvukh igrokov”, Vestn. Mosk. un-ta. Ser. 15: Vychisl. matematika i kibernetika, 2014, no. 2, 25–29

[10] Antipin A., “Gradient approach of computing fixed points of equilibrium problems”, J. Global Optim., 24:3 (2002), 285–309 | DOI | MR | Zbl