Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_291_a16, author = {V. I. Maksimov}, title = {Calculation of the derivative of an inaccurately defined function by means of feedback laws}, journal = {Informatics and Automation}, pages = {231--243}, publisher = {mathdoc}, volume = {291}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a16/} }
TY - JOUR AU - V. I. Maksimov TI - Calculation of the derivative of an inaccurately defined function by means of feedback laws JO - Informatics and Automation PY - 2015 SP - 231 EP - 243 VL - 291 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a16/ LA - ru ID - TRSPY_2015_291_a16 ER -
V. I. Maksimov. Calculation of the derivative of an inaccurately defined function by means of feedback laws. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 231-243. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a16/
[1] Stechkin S.B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | Zbl
[2] Vasin V.V., “Ob ustoichivom vychislenii proizvodnoi v prostranstve $C(-\infty ,\infty )$”, ZhVMiMF, 13:6 (1973), 1383–1389 | MR
[3] Stechkin S.B., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR
[4] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR
[5] Arestov V.V., “O ravnomernoi regulyarizatsii zadachi vychisleniya znachenii operatora”, Mat. zametki, 22:2 (1977), 231–244 | MR | Zbl
[6] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR
[7] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, Amsterdam, 1995 | MR | Zbl
[8] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, UrO RAN, Ekaterinburg, 2011
[9] Blizorukova M.S., Maksimov V.I., Pandolfi L., “Dinamicheskaya rekonstruktsiya vkhoda v nelineinoi sisteme s zapazdyvaniem”, Avtomatika i telemekhanika, 2002, no. 2, 3–13 | MR | Zbl
[10] Maksimov V.I., “Metod upravlyaemykh modelei v zadache rekonstruktsii granichnogo vkhoda”, Tr. MIAN, 262 (2008), 178–186 | MR | Zbl
[11] Kryazhimskiy A.V., Maksimov V.I., “On rough inversion of a dynamical system with a disturbance”, J. Inverse Ill-Posed Probl., 16:6 (2008), 587–600 | DOI | MR | Zbl
[12] Maksimov V.I., Fedina N.A., “Metod upravlyaemykh modelei v zadache rekonstruktsii nelineinoi sistemy s zapazdyvaniem”, Dif. uravneniya, 43:1 (2007), 36–40 | MR | Zbl
[13] Lavrentev M.M., Maksimov V.I., “O vosstanovlenii pravoi chasti parabolicheskogo uravneniya”, ZhVMiMF, 48:4 (2008), 674–680 | MR | Zbl
[14] Kryazhimskii A.V., Osipov Yu.S., “O nailuchshem priblizhenii operatora differentsirovaniya v klasse neuprezhdayuschikh operatorov”, Mat. zametki, 37:2 (1985), 192–199 | MR
[15] Maksimov V.I., Pandolfi L., “O rekonstruktsii neogranichennykh upravlenii v nelineinykh dinamicheskikh sistemakh”, PMM, 65:3 (2001), 385–391 | MR | Zbl
[16] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR