Stability of the zero solution of a relay system of ordinary differential equations with two relays
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 182-201

Voir la notice de l'article provenant de la source Math-Net.Ru

A relay system of ordinary differential equations whose right-hand sides are sums of linear functions and two discontinuous functions is considered. The stability of the zero solution of a typical relay system of this kind is analyzed.
@article{TRSPY_2015_291_a13,
     author = {A. A. Losev},
     title = {Stability of the zero solution of a relay system of ordinary differential equations with two relays},
     journal = {Informatics and Automation},
     pages = {182--201},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a13/}
}
TY  - JOUR
AU  - A. A. Losev
TI  - Stability of the zero solution of a relay system of ordinary differential equations with two relays
JO  - Informatics and Automation
PY  - 2015
SP  - 182
EP  - 201
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a13/
LA  - ru
ID  - TRSPY_2015_291_a13
ER  - 
%0 Journal Article
%A A. A. Losev
%T Stability of the zero solution of a relay system of ordinary differential equations with two relays
%J Informatics and Automation
%D 2015
%P 182-201
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a13/
%G ru
%F TRSPY_2015_291_a13
A. A. Losev. Stability of the zero solution of a relay system of ordinary differential equations with two relays. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 182-201. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a13/