Proportional economic growth under conditions of limited natural resources
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 138-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to economic growth models in which the dynamics of production factors satisfy proportionality conditions. One of the main production factors in the problem of optimizing the productivity of natural resources is the current level of resource consumption, which is characterized by a sharp increase in the prices of resources compared with the price of capital. Investments in production factors play the role of control parameters in the model and are used to maintain proportional economic development. To solve the problem, we propose a two-level optimization structure. At the lower level, proportions are adapted to the changing economic environment according to the optimization mechanism of the production level under fixed cost constraints. At the upper level, the problem of optimal control of investments for an aggregate economic growth model is solved by means of the Pontryagin maximum principle. The application of optimal proportional constructions leads to a system of nonlinear differential equations, whose steady states can be considered as equilibrium states of the economy. We prove that the steady state is not stable, and the system tends to collapse (the production level declines to zero) if the initial point does not coincide with the steady state. We study qualitative properties of the trajectories generated by the proportional development dynamics and indicate the regions of production growth and decay. The parameters of the model are identified by econometric methods on the basis of China's economic data.
@article{TRSPY_2015_291_a11,
     author = {A. V. Kryazhimskiy and A. M. Tarasyev and A. A. Usova and W. Wang},
     title = {Proportional economic growth under conditions of limited natural resources},
     journal = {Informatics and Automation},
     pages = {138--156},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a11/}
}
TY  - JOUR
AU  - A. V. Kryazhimskiy
AU  - A. M. Tarasyev
AU  - A. A. Usova
AU  - W. Wang
TI  - Proportional economic growth under conditions of limited natural resources
JO  - Informatics and Automation
PY  - 2015
SP  - 138
EP  - 156
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a11/
LA  - ru
ID  - TRSPY_2015_291_a11
ER  - 
%0 Journal Article
%A A. V. Kryazhimskiy
%A A. M. Tarasyev
%A A. A. Usova
%A W. Wang
%T Proportional economic growth under conditions of limited natural resources
%J Informatics and Automation
%D 2015
%P 138-156
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a11/
%G ru
%F TRSPY_2015_291_a11
A. V. Kryazhimskiy; A. M. Tarasyev; A. A. Usova; W. Wang. Proportional economic growth under conditions of limited natural resources. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 138-156. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a11/

[1] Ane B.K., Tarasyev A.M., Watanabe C., “Construction of nonlinear stabilizer for trajectories of economic growth”, J. Optim. Theory Appl., 134:2 (2007), 303–320 | DOI | MR | Zbl

[2] Arrow K.J., Production and capital, Collected papers of Kenneth J. Arrow, 5, Belknap Press Harvard Univ. Press, Cambridge, MA, 1985

[3] Aseev S., Besov K., Kaniovski S., Optimal endogenous growth with exhaustible resources, Interim Rep. IR-10-011, IIASA, Laxenburg, 2010

[4] Aseev S.M., Kryazhimskii A.V., Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta, Tr. MIAN, 257, Nauka, M., 2007 | MR | Zbl

[5] Ayres R.U., Krasovskii A.A., Tarasyev A.M., “Nonlinear stabilizers of economic growth under exhausting energy resources”, Proc. IFAC Workshop on Control Applications of Optimization (Univ. Jyväskylä, Finland, 2009), Int. Fed. Autom. Control, Laxenburg, 2009, 251–256

[6] Barro R.J., Sala-i-Martin X., Economic growth, McGraw Hill, New York, 1995

[7] Başar T., Olsder G.J., Dynamic noncooperative game theory, Acad. Press, London, 1982 | MR

[8] Dynamic systems, economic growth, and the environment, Dyn. Model. Econometr. Econ. Finance, 12, Ed. by J. Crespo Cuaresma, T. Palokangas, A. Tarasyev, Springer, Berlin, 2010 | Zbl

[9] Green growth and sustainable development, Dyn. Model. Econometr. Econ. Finance, 14, Ed. by J. Crespo Cuaresma, T. Palokangas, A. Tarasyev, Springer, Berlin, 2013 | MR | Zbl

[10] Grossman G.M., Helpman E., Innovation and growth in the global economy, MIT Press, Cambridge, MA, 1991

[11] Hartman P., Ordinary differential equations, J. Wiley Sons, New York, 1964 | MR | Zbl

[12] Hofbauer J., Sigmund K., The theory of evolution and dynamical systems: Mathematical aspects of selection, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[13] Intriligator M.D., Mathematical optimization and economic theory, Prentice-Hall, Englewood Cliffs, NJ, 1971 | MR

[14] Krasovskii A.A., Matrosov I.V., Tarasyev A.M., “Optimal timing control in game modeling of an energy project infrastructure”, Nonlinear Anal., Theory Methods Appl., 71:12 (2009), e2498–e2506 | DOI

[15] Krasovskii A.A., Tarasev A.M., “Svoistva gamiltonovykh sistem v printsipe maksimuma Pontryagina dlya zadach ekonomicheskogo rosta”, Tr. MIAN, 262 (2008), 127–145 | MR | Zbl

[16] Krasovskii N.A., Kryazhimskii A.V., Tarasev A.M., “Uravneniya Gamiltona–Yakobi v evolyutsionnykh igrakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 114–131 | MR

[17] Krasovskii N.A., Tarasev A.M., “Poisk tochek maksimuma vektornogo kriteriya s dekompozitsionnymi svoistvami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:4 (2009), 167–182

[18] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988 | MR

[19] Kryazhimskii A., Nentjes A., Shibayev S., Tarasyev A., “Modeling market equilibrium for transboundary environmental problem”, Nonlinear Anal., Theory Methods Appl., 47:2 (2001), 991–1002 | DOI | MR | Zbl

[20] Kryazhimskii A.V., Osipov Yu.S., “O differentsialno-evolyutsionnykh igrakh”, Tr. MIAN, 211 (1995), 257–287 | MR

[21] Measuring material flows and resource productivity, Synthesis Report, OECD Publ., Paris, 2008 http://www.oecd.org/env/indicators-modelling-outlooks/MFA-Synthesis.pdf

[22] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[23] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical systems theory and economics, V. 1, Springer, Berlin, 1969, 241–292 | DOI | MR

[24] Solow R.M., Growth theory: An exposition, Oxford Univ. Press, New York, 1970

[25] Tarasev A.M., Usova A.A., “Stabilizatsiya gamiltonovoi sistemy dlya postroeniya optimalnykh traektorii”, Tr. MIAN, 277 (2012), 257–274 | MR

[26] Tarasyev A., Usova A., “Application of a nonlinear stabilizer for localizing search of optimal trajectories in control problems with infinite horizon”, Numer. Algebra Control Optim., 3:3 (2013), 389–406 | DOI | MR | Zbl

[27] Tarasyev A., Zhu B., “Optimal proportions in growth trends of resource productivity”, Proc. 15th IFAC Workshop on Control Applications of Optimization (Rimini (Italy), 2012), Int. Fed. Autom. Control, Laxenburg, 2012, 182–187 | MR