Application of optimal control to a biomechanics model
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 128-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of sport biomechanics describing short-distance running (sprinting) is developed by applying methods of optimal control. In the considered model, the motion of a sportsman is described by a second-order ordinary differential equation. Two interconnected optimal control problems are formulated and solved: the minimum energy and time-optimal control problems. Based on the comparison with real data, it is shown that the proposed approach to sprint modeling provides realistic results.
@article{TRSPY_2015_291_a10,
     author = {A. A. Krasovskii},
     title = {Application of optimal control to a biomechanics model},
     journal = {Informatics and Automation},
     pages = {128--137},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a10/}
}
TY  - JOUR
AU  - A. A. Krasovskii
TI  - Application of optimal control to a biomechanics model
JO  - Informatics and Automation
PY  - 2015
SP  - 128
EP  - 137
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a10/
LA  - ru
ID  - TRSPY_2015_291_a10
ER  - 
%0 Journal Article
%A A. A. Krasovskii
%T Application of optimal control to a biomechanics model
%J Informatics and Automation
%D 2015
%P 128-137
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a10/
%G ru
%F TRSPY_2015_291_a10
A. A. Krasovskii. Application of optimal control to a biomechanics model. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 128-137. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a10/

[1] Bellman R., Dinamicheskoe programmirovanie, Izd-vo inostr. lit., M., 1960 | MR

[2] Eriksen H.K., Kristiansen J.R., Langangen Ø., Wehus I.K., “How fast could Usain Bolt have run? A dynamical study”, Amer. J. Phys., 77:3 (2009), 224–228 | DOI

[3] Gaudet S., “A physical model of sprinting”, J. Biomech., 47:12 (2014), 2933–2940 | DOI

[4] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[5] Helene O., Yamashita M.T., “The force, power, and energy of the 100 meter sprint”, Amer. J. Phys., 78:3 (2010), 307–309 | DOI

[6] Hernández Gómez J.J., Marquina V., Gómez R.W., “On the performance of Usain Bolt in the 100 m sprint”, Eur. J. Phys., 34:5 (2013), 1227–1233 | DOI

[7] Keller J.B., “A theory of competitive running”, Phys. Today, 26:9 (1973), 43–47 | DOI

[8] Krasovskii N.N., Teoriya upravleniya dvizheniem: Lineinye sistemy, Nauka, M., 1968 | MR

[9] Miller R.H., Umberger B.R., Hamill J., Caldwell G.E., “Evaluation of the minimum energy hypothesis and other potential optimality criteria for human running”, Proc. R. Soc. London B: Biol. Sci., 279 (2012), 1498–1505 | DOI

[10] Mureika J.R., “A realistic quasi-physical model of the 100 m dash”, Can. J. Phys., 79:4 (2001), 697–713 | DOI

[11] Pontryagin L.S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1974 | MR

[12] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961