Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_291_a10, author = {A. A. Krasovskii}, title = {Application of optimal control to a biomechanics model}, journal = {Informatics and Automation}, pages = {128--137}, publisher = {mathdoc}, volume = {291}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a10/} }
A. A. Krasovskii. Application of optimal control to a biomechanics model. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 128-137. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a10/
[1] Bellman R., Dinamicheskoe programmirovanie, Izd-vo inostr. lit., M., 1960 | MR
[2] Eriksen H.K., Kristiansen J.R., Langangen Ø., Wehus I.K., “How fast could Usain Bolt have run? A dynamical study”, Amer. J. Phys., 77:3 (2009), 224–228 | DOI
[3] Gaudet S., “A physical model of sprinting”, J. Biomech., 47:12 (2014), 2933–2940 | DOI
[4] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR
[5] Helene O., Yamashita M.T., “The force, power, and energy of the 100 meter sprint”, Amer. J. Phys., 78:3 (2010), 307–309 | DOI
[6] Hernández Gómez J.J., Marquina V., Gómez R.W., “On the performance of Usain Bolt in the 100 m sprint”, Eur. J. Phys., 34:5 (2013), 1227–1233 | DOI
[7] Keller J.B., “A theory of competitive running”, Phys. Today, 26:9 (1973), 43–47 | DOI
[8] Krasovskii N.N., Teoriya upravleniya dvizheniem: Lineinye sistemy, Nauka, M., 1968 | MR
[9] Miller R.H., Umberger B.R., Hamill J., Caldwell G.E., “Evaluation of the minimum energy hypothesis and other potential optimality criteria for human running”, Proc. R. Soc. London B: Biol. Sci., 279 (2012), 1498–1505 | DOI
[10] Mureika J.R., “A realistic quasi-physical model of the 100 m dash”, Can. J. Phys., 79:4 (2001), 697–713 | DOI
[11] Pontryagin L.S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1974 | MR
[12] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961