Decomposable branching processes with a fixed extinction moment
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 114-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behavior as $n\to \infty $ of the probability of the event that a decomposable critical branching process $\mathbf Z(m)= (Z_1(m),\dots ,Z_N(m))$, $m=0,1,2,\dots $, with $N$ types of particles dies at moment $n$ is investigated, and conditional limit theorems are proved that describe the distribution of the number of particles in the process $\mathbf Z(\cdot )$ at moment $m$ given that the extinction moment of the process is $n$. These limit theorems can be considered as statements describing the distribution of the number of vertices in the layers of certain classes of simply generated random trees of fixed height.
@article{TRSPY_2015_290_a9,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Decomposable branching processes with a fixed extinction moment},
     journal = {Informatics and Automation},
     pages = {114--135},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a9/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Decomposable branching processes with a fixed extinction moment
JO  - Informatics and Automation
PY  - 2015
SP  - 114
EP  - 135
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a9/
LA  - ru
ID  - TRSPY_2015_290_a9
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Decomposable branching processes with a fixed extinction moment
%J Informatics and Automation
%D 2015
%P 114-135
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a9/
%G ru
%F TRSPY_2015_290_a9
V. A. Vatutin; E. E. D'yakonova. Decomposable branching processes with a fixed extinction moment. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 114-135. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a9/

[1] Foster J., Ney P., “Decomposable critical multi-type branching processes”, Sankhyā. Ser. A, 38 (1976), 28–37 | MR | Zbl

[2] Foster J., Ney P., “Limit laws for decomposable critical branching processes”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 46 (1978), 13–43 | DOI | MR | Zbl

[3] Janson S., “Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation”, Probab. Surv., 9 (2012), 103–252 | DOI | MR | Zbl

[4] Joffe A., Spitzer F., “On multitype branching processes with $\rho \leq 1$”, J. Math. Anal. Appl., 19 (1967), 409–430 | DOI | MR | Zbl

[5] Karpenko A.V., Nagaev S.V., “Predelnye teoremy dlya polnogo chisla potomkov v vetvyaschemsya protsesse Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 38:3 (1993), 503–528 | MR | Zbl

[6] Kesten H., “Subdiffusive behavior of random walk on a random cluster”, Ann. Inst. Henri Poincaré. Probab. Stat., 22 (1986), 425–487 | MR | Zbl

[7] Meir A., Moon J.W., “On the altitude of nodes in random trees”, Can. J. Math., 30 (1978), 997–1015 | DOI | MR | Zbl

[8] Mullikin T.W., “Limiting distributions for critical multitype branching processes with discrete time”, Trans. Amer. Math. Soc., 106 (1963), 469–494 | DOI | MR

[9] Ogura Y., “Asymptotic behavior of multitype Galton–Watson processes”, J. Math. Kyoto Univ., 15 (1975), 251–302 | MR | Zbl

[10] Pakes A.G., “Some limit theorems for the total progeny of a branching process”, Adv. Appl. Probab., 3 (1971), 176–192 | DOI | MR | Zbl

[11] Polin A.K., “Predelnye teoremy dlya razlozhimykh kriticheskikh vetvyaschikhsya protsessov”, Mat. sb., 100:3 (1976), 420–435 | MR | Zbl

[12] Polin A.K., “Predelnye teoremy dlya razlozhimykh vetvyaschikhsya protsessov s finalnymi tipami”, Mat. sb., 104:1 (1977), 151–161 | MR | Zbl

[13] Savin A.A., Chistyakov V.P., “Nekotorye teoremy dlya vetvyaschikhsya protsessov s neskolkimi tipami chastits”, Teoriya veroyatn. i ee primen., 7:1 (1962), 95–104 | Zbl

[14] Vatutin V.A., “Predelnye teoremy dlya kriticheskikh markovskikh vetvyaschikhsya protsessov s neskolkimi tipami chastits i beskonechnymi vtorymi momentami”, Mat. sb., 103:2 (1977), 253–264 | MR | Zbl

[15] Vatutin V.A., “Kriticheskii vetvyaschiisya protsess Galtona–Vatsona s emigratsiei”, Teoriya veroyatn. i ee primen., 22:3 (1977), 482–497 | MR | Zbl

[16] Vatutin V.A., “Struktura razlozhimykh redutsirovannykh vetvyaschikhsya protsessov. I: Konechnomernye raspredeleniya”, Teoriya veroyatn. i ee primen., 59:4 (2014), 667–692 | DOI | MR

[17] Vatutin V., Dyakonova E., Jagers P., Sagitov S., “A decomposable branching process in a Markovian environment”, Int. J. Stoch. Anal., 2012 (2012), 694285 | MR | Zbl

[18] Vatutin V.A., Sagitov S.M., “Razlozhimyi kriticheskii vetvyaschiisya protsess s dvumya tipami chastits”, Tr. MIAN, 177 (1986), 3–20 | MR | Zbl

[19] Zubkov A.M., “Predelnoe povedenie razlozhimykh kriticheskikh vetvyaschikhsya protsessov s dvumya tipami chastits”, Teoriya veroyatn. i ee primen., 27:2 (1982), 228–238 | MR | Zbl