Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_290_a9, author = {V. A. Vatutin and E. E. D'yakonova}, title = {Decomposable branching processes with a fixed extinction moment}, journal = {Informatics and Automation}, pages = {114--135}, publisher = {mathdoc}, volume = {290}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a9/} }
V. A. Vatutin; E. E. D'yakonova. Decomposable branching processes with a fixed extinction moment. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 114-135. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a9/
[1] Foster J., Ney P., “Decomposable critical multi-type branching processes”, Sankhyā. Ser. A, 38 (1976), 28–37 | MR | Zbl
[2] Foster J., Ney P., “Limit laws for decomposable critical branching processes”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 46 (1978), 13–43 | DOI | MR | Zbl
[3] Janson S., “Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation”, Probab. Surv., 9 (2012), 103–252 | DOI | MR | Zbl
[4] Joffe A., Spitzer F., “On multitype branching processes with $\rho \leq 1$”, J. Math. Anal. Appl., 19 (1967), 409–430 | DOI | MR | Zbl
[5] Karpenko A.V., Nagaev S.V., “Predelnye teoremy dlya polnogo chisla potomkov v vetvyaschemsya protsesse Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 38:3 (1993), 503–528 | MR | Zbl
[6] Kesten H., “Subdiffusive behavior of random walk on a random cluster”, Ann. Inst. Henri Poincaré. Probab. Stat., 22 (1986), 425–487 | MR | Zbl
[7] Meir A., Moon J.W., “On the altitude of nodes in random trees”, Can. J. Math., 30 (1978), 997–1015 | DOI | MR | Zbl
[8] Mullikin T.W., “Limiting distributions for critical multitype branching processes with discrete time”, Trans. Amer. Math. Soc., 106 (1963), 469–494 | DOI | MR
[9] Ogura Y., “Asymptotic behavior of multitype Galton–Watson processes”, J. Math. Kyoto Univ., 15 (1975), 251–302 | MR | Zbl
[10] Pakes A.G., “Some limit theorems for the total progeny of a branching process”, Adv. Appl. Probab., 3 (1971), 176–192 | DOI | MR | Zbl
[11] Polin A.K., “Predelnye teoremy dlya razlozhimykh kriticheskikh vetvyaschikhsya protsessov”, Mat. sb., 100:3 (1976), 420–435 | MR | Zbl
[12] Polin A.K., “Predelnye teoremy dlya razlozhimykh vetvyaschikhsya protsessov s finalnymi tipami”, Mat. sb., 104:1 (1977), 151–161 | MR | Zbl
[13] Savin A.A., Chistyakov V.P., “Nekotorye teoremy dlya vetvyaschikhsya protsessov s neskolkimi tipami chastits”, Teoriya veroyatn. i ee primen., 7:1 (1962), 95–104 | Zbl
[14] Vatutin V.A., “Predelnye teoremy dlya kriticheskikh markovskikh vetvyaschikhsya protsessov s neskolkimi tipami chastits i beskonechnymi vtorymi momentami”, Mat. sb., 103:2 (1977), 253–264 | MR | Zbl
[15] Vatutin V.A., “Kriticheskii vetvyaschiisya protsess Galtona–Vatsona s emigratsiei”, Teoriya veroyatn. i ee primen., 22:3 (1977), 482–497 | MR | Zbl
[16] Vatutin V.A., “Struktura razlozhimykh redutsirovannykh vetvyaschikhsya protsessov. I: Konechnomernye raspredeleniya”, Teoriya veroyatn. i ee primen., 59:4 (2014), 667–692 | DOI | MR
[17] Vatutin V., Dyakonova E., Jagers P., Sagitov S., “A decomposable branching process in a Markovian environment”, Int. J. Stoch. Anal., 2012 (2012), 694285 | MR | Zbl
[18] Vatutin V.A., Sagitov S.M., “Razlozhimyi kriticheskii vetvyaschiisya protsess s dvumya tipami chastits”, Tr. MIAN, 177 (1986), 3–20 | MR | Zbl
[19] Zubkov A.M., “Predelnoe povedenie razlozhimykh kriticheskikh vetvyaschikhsya protsessov s dvumya tipami chastits”, Teoriya veroyatn. i ee primen., 27:2 (1982), 228–238 | MR | Zbl