Number of components of the nullcone
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 95-101

Voir la notice de l'article provenant de la source Math-Net.Ru

For every pair $(G,V)$ where $G$ is a connected simple linear algebraic group and $V$ is a simple algebraic $G$-module with a free algebra of invariants, the number of irreducible components of the nullcone of unstable vectors in $V$ is found.
@article{TRSPY_2015_290_a7,
     author = {V. L. Popov},
     title = {Number of components of the nullcone},
     journal = {Informatics and Automation},
     pages = {95--101},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a7/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Number of components of the nullcone
JO  - Informatics and Automation
PY  - 2015
SP  - 95
EP  - 101
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a7/
LA  - ru
ID  - TRSPY_2015_290_a7
ER  - 
%0 Journal Article
%A V. L. Popov
%T Number of components of the nullcone
%J Informatics and Automation
%D 2015
%P 95-101
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a7/
%G ru
%F TRSPY_2015_290_a7
V. L. Popov. Number of components of the nullcone. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 95-101. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a7/