Geometric realizations of quiver algebras
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 80-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct strong exceptional collections of vector bundles on smooth projective varieties that have a prescribed endomorphism algebra. We prove that the construction problem always has a solution. We consider some applications to noncommutative projective planes and to the quiver connected with the three-point Ising function.
@article{TRSPY_2015_290_a6,
     author = {D. O. Orlov},
     title = {Geometric realizations of quiver algebras},
     journal = {Informatics and Automation},
     pages = {80--94},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a6/}
}
TY  - JOUR
AU  - D. O. Orlov
TI  - Geometric realizations of quiver algebras
JO  - Informatics and Automation
PY  - 2015
SP  - 80
EP  - 94
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a6/
LA  - ru
ID  - TRSPY_2015_290_a6
ER  - 
%0 Journal Article
%A D. O. Orlov
%T Geometric realizations of quiver algebras
%J Informatics and Automation
%D 2015
%P 80-94
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a6/
%G ru
%F TRSPY_2015_290_a6
D. O. Orlov. Geometric realizations of quiver algebras. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 80-94. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a6/

[1] Artin M., Tate J., Van den Bergh M., “Some algebras associated to automorphisms of elliptic curves”, The Grothendieck Festschrift, Prog. Math., 86, Birkhäuser, 1990, Boston, 33–85 | MR

[2] Auroux D., Katzarkov L., Orlov D., “Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves”, Invent. math., 166:3 (2006), 537–582 | DOI | MR | Zbl

[3] Bondal A., Orlov D., Semiorthogonal decompositions for algebraic varieties, Preprint 95-15, Max Planck Inst. Math., Bonn, 1995, arXiv: alg-geom/9506012

[4] Bondal A.I., Polischuk A.E., “Gomologicheskie svoistva assotsiativnykh algebr: metod spiralei”, Izv. RAN. Ser. mat., 57:2 (1993), 3–50 | MR | Zbl

[5] Bondal A., Van den Bergh M., “Generators and representability of functors in commutative and noncommutative geometry”, Moscow Math. J., 3:1 (2003), 1–36 | MR | Zbl

[6] Cecotti S., Vafa C., “On classification of $N=2$ supersymmetric theories”, Commun. Math. Phys., 158:3 (1993), 569–644 | DOI | MR | Zbl

[7] Drinfeld V., “DG quotients of DG categories”, J. Algebra., 272:2 (2004), 643–691 | DOI | MR | Zbl

[8] Gabriel P., “Auslander–Reiten sequences and representation-finite algebras”, Representation theory I, Proc. Workshop, Ottawa, 1979, Lect. Notes Math., 831, Springer, Berlin, 1980, 1–71 | DOI | MR

[9] Kashiwara M., Schapira P., Categories and sheaves, Springer, Berlin, 2006 | MR | Zbl

[10] Keller B., “Deriving DG categories”, Ann. sci. Éc. Norm. Supér. Sér. 4, 27:1 (1994), 63–102 | MR | Zbl

[11] Keller B., “On differential graded categories”, Proc. Int. Congr. Math., Madrid, 2006, V. 2, Eur. Math. Soc., Zürich, 2006, 151–190 | MR | Zbl

[12] Kuznetsov A., A simple counterexample to the Jordan–Hölder property for derived categories, E-print, 2013, arXiv: 1304.0903 [math.AG]

[13] Lunts V.A., Orlov D.O., “Uniqueness of enhancement for triangulated categories”, J. Amer. Math. Soc., 23:3 (2010), 853–908 | DOI | MR | Zbl

[14] Neeman A., “The Grothendieck duality theorem via Bousfield's techniques and Brown representability”, J. Amer. Math. Soc., 9:1 (1996), 205–236 | DOI | MR | Zbl

[15] Orlov D.O., “Proektivnye rassloeniya, monoidalnye preobrazovaniya i proizvodnye kategorii kogerentnykh puchkov”, Izv. RAN. Ser. mat., 56:4 (1992), 852–862 | MR | Zbl

[16] Orlov D., “Remarks on generators and dimensions of triangulated categories”, Moscow Math. J., 9:1 (2009), 143–149 | MR | Zbl

[17] Orlov D., Smooth and proper noncommutative schemes and gluing of DG categories, E-print, 2014, arXiv: 1402.7364 [math.AG]