Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_290_a5, author = {S. L. Kuznetsov}, title = {On translating context-free grammars into {Lambek} grammars}, journal = {Informatics and Automation}, pages = {72--79}, publisher = {mathdoc}, volume = {290}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a5/} }
S. L. Kuznetsov. On translating context-free grammars into Lambek grammars. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 72-79. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a5/
[1] Bar-Hillel Y., Gaifman C., Shamir E., “On categorial and phrase-structure grammars”, Bull. Res. Council Israel. Sect. F, 9F (1960), 1–16 | MR
[2] van Benthem J., “The semantics of variety in categorial grammar”, Categorial grammar, J. Benjamins, Amsterdam, 1988, 37–55 | MR
[3] Buszkowski W., “The equivalence of unidirectional Lambek categorial grammars and context-free grammars”, Z. math. Logik Grundlagen Math., 31 (1985), 369–384 | DOI | MR | Zbl
[4] Buszkowski W., On the equivalence of Lambek categorial grammars and basic categorial grammars, ILLC Prepubl. Ser. Preprint LP-93-07, Univ. Amsterdam, Inst. Logic, Lang. and Comput., Amsterdam, 1993
[5] Carpenter B., Type-logical semantics, MIT Press, Cambridge, MA, 1997 | MR
[6] Chomsky N., “Three models for the description of language”, IRE Trans. Inf. Theory, IT-2:3 (1956), 113–124 | DOI
[7] Dowty D.R., Wall R.E., Peters S., Introduction to Montague semantics, D. Reidel, Dordrecht, 1981
[8] Greibach S.A., “A new normal-form theorem for context-free phrase structure grammars”, J. Assoc. Comput. Mach., 12:1 (1965), 42–52 | DOI | MR | Zbl
[9] Hendriks H., Studied flexibility: Categories and types in syntax and semantics, PhD Dissert, Univ. Amsterdam, Amsterdam, 1993
[10] Howard W.A., “The formulae-as-types notion of construction”, To H.B. Curry: Essays on combinatory logic, lambda calculus and formalism, Ed. by J.P. Seldin, H.J. Roger, Acad. Press, London, 1980, 479–490 | MR
[11] Kanazawa M., Salvati S., “The string-meaning relations definable by Lambek grammars and context-free grammars”, Formal Grammar, Proc. 17th and 18th Int. Confs., FG 2012/2013, Lect. Notes Comput. Sci., 8036, Ed. by G. Morrill, M.-J. Nederhof, Springer, Berlin, 2013, 191–208 | DOI | MR | Zbl
[12] Kuznetsov S., “Lambek grammars with one division and one primitive type”, Log. J. IGPL., 20:1 (2012), 207–221 | DOI | MR | Zbl
[13] Lambek J., “The mathematics of sentence structure”, Amer. Math. Mon., 65:3 (1958), 154–170 | DOI | MR | Zbl
[14] Pentus M.R., “Ischislenie Lambeka i formalnye grammatiki”, Fund. i prikl. matematika., 1:3 (1995), 729–751 | MR | Zbl
[15] Savateev Yu., “Product-free Lambek calculus is NP-complete”, Logical foundations of computer science, Proc. Int. Symp. LFCS 2009, Lect. Notes Comput. Sci., 5407, Ed. by S. Artemov, A. Nerode, Springer, Berlin, 2009, 380–394 | DOI | MR | Zbl