On incomplete Gaussian sums
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 61-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Square-root bounds for the quadratic Gaussian sums are given with explicit constants.
@article{TRSPY_2015_290_a4,
     author = {M. A. Korolev},
     title = {On incomplete {Gaussian} sums},
     journal = {Informatics and Automation},
     pages = {61--71},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a4/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On incomplete Gaussian sums
JO  - Informatics and Automation
PY  - 2015
SP  - 61
EP  - 71
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a4/
LA  - ru
ID  - TRSPY_2015_290_a4
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On incomplete Gaussian sums
%J Informatics and Automation
%D 2015
%P 61-71
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a4/
%G ru
%F TRSPY_2015_290_a4
M. A. Korolev. On incomplete Gaussian sums. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 61-71. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a4/

[1] Hardy G.H., Littlewood J.E., “Some problems of Diophantine approximation. II: The trigonometrical series associated with the elliptic $\vartheta $-functions”, Acta math., 37 (1914), 193–239 | DOI | MR | Zbl

[2] Vinogradov' I.M., “O srednem' znachenii chisla klassov' chisto-korennykh' form' otritsatelnago opredѣlitelya”, Soobsch. Kharkov. mat. o-va. Ser. 2, 16:1–2 (1918), 10–38 | Zbl

[3] van der Corput J.G., “Verschärfung der Abschätzung beim Teilerproblem”, Math. Ann., 87:1–2 (1922), 39–65 | MR | Zbl

[4] Vinogradov I.M., “O raspredelenii drobnykh dolei znachenii funktsii dvukh peremennykh”, Izv. Leningr. politekh. in-ta, 30 (1927), 31–52 | Zbl

[5] Titchmarsh E.C., “On van der Corput's method and zeta function of Riemann. I, II”, Q. J. Math., 2 (1931), 161–173 | DOI

[6] Phillips E., “The zeta-function of Riemann; further developments of van der Corput's method”, Q. J. Math., 4 (1933), 209–225 | DOI

[7] Vinogradov I.M., Osobye varianty metoda trigonometricheskikh summ, Nauka, M., 1976 | MR

[8] Karatsuba A.A., “Approximation of exponential sums by shorter ones”, Proc. Indian Acad. Sci. Math. Sci., 97:1–3 (1987), 167–178 | DOI | MR | Zbl

[9] Karatsuba A.A., Korolëv M.A., “Teorema o priblizhenii trigonometricheskoi summy bolee korotkoi”, Izv. RAN. Ser. mat., 71:2 (2007), 123–150 | DOI | MR | Zbl

[10] Fielder H., Jurkat W., Köner O., “Asymptotic expansions of finite theta series”, Acta arith., 32:2 (1977), 129–146 | MR

[11] Oskolkov K.I., “On functional properties of incomplete Gaussian sums”, Can. J. Math., 43:1 (1991), 182–212 | DOI | MR | Zbl

[12] Gradshtein I.S., Ryzhik I.M., Tablitsy integralov, summ, ryadov i proizvedenii, 4-e izd., Fizmatgiz, M., 1963 | MR

[13] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, T. 2, 6-e izd., Nauka, M., 1966

[14] Valfish A.Z., Tselye tochki v mnogomernykh sharakh, Izd-vo AN GrSSR, Tbilisi, 1959 | MR

[15] Lehmer D.H., “Incomplete Gauss sums”, Mathematika, 23:2 (1976), 125–135 | DOI | MR | Zbl