Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_290_a3, author = {D. Kaledin}, title = {Cartier isomorphism for unital associative algebras}, journal = {Informatics and Automation}, pages = {43--60}, publisher = {mathdoc}, volume = {290}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a3/} }
D. Kaledin. Cartier isomorphism for unital associative algebras. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 43-60. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a3/
[1] Beilinson A., “On the crystalline period map”, Cambridge J. Math., 1 (2013), 1–51, arXiv: 1111.3316 [math.AG] | DOI | MR | Zbl
[2] Bhatt B., $p$-Adic derived de Rham cohomology, E-print, 2012, arXiv: 1204.6560 [math.AG] | MR
[3] Connes A., “Cohomologie cyclique et foncteurs $\mathrm {Ext}^n$”, C. r. Acad. sci. Paris. Sér. I, 296 (1983), 953–958 | MR | Zbl
[4] Deligne P., Illusie L., “Relèvements modulo $p^2$ et décomposition du complexe de de Rham”, Invent. math., 89 (1987), 247–270 | DOI | MR | Zbl
[5] Feigin B.L., Tsygan B.L., “Additive K-theory”, K-theory, arithmetic and geometry, Semin., Moscow Univ., 1984–1986, Lect. Notes Math., 1289, Springer, Berlin, 1987, 67–209 | DOI | MR
[6] Séminaire de géométrie algébrique du Bois Marie 1960–1961: Revêtements étales et groupe fondamental (SGA 1), Exp. VI, Lect. Notes Math., 224, dirigé par A. Grothendieck, Springer, Berlin, 1971 | MR
[7] Kaledin D., “Non-commutative Hodge-to-de Rham degeneration via the method of Deligne–Illusie”, Pure Appl. Math. Q., 4 (2008), 785–875 | DOI | MR | Zbl
[8] Loday J.-L., Cyclic homology, Grundl. Math. Wiss., 301, 2nd ed., Springer, Berlin, 1998 | MR | Zbl