Cartier isomorphism for unital associative algebras
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 43-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given an associative unital algebra $A$ over a perfect field $k$ of odd positive characteristic, we construct a noncommutative generalization of the Cartier isomorphism for $A$. The role of differential forms is played by Hochschild homology classes, and the de Rham differential is replaced with the Connes–Tsygan differential.
@article{TRSPY_2015_290_a3,
     author = {D. Kaledin},
     title = {Cartier isomorphism for unital associative algebras},
     journal = {Informatics and Automation},
     pages = {43--60},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a3/}
}
TY  - JOUR
AU  - D. Kaledin
TI  - Cartier isomorphism for unital associative algebras
JO  - Informatics and Automation
PY  - 2015
SP  - 43
EP  - 60
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a3/
LA  - ru
ID  - TRSPY_2015_290_a3
ER  - 
%0 Journal Article
%A D. Kaledin
%T Cartier isomorphism for unital associative algebras
%J Informatics and Automation
%D 2015
%P 43-60
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a3/
%G ru
%F TRSPY_2015_290_a3
D. Kaledin. Cartier isomorphism for unital associative algebras. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 43-60. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a3/

[1] Beilinson A., “On the crystalline period map”, Cambridge J. Math., 1 (2013), 1–51, arXiv: 1111.3316 [math.AG] | DOI | MR | Zbl

[2] Bhatt B., $p$-Adic derived de Rham cohomology, E-print, 2012, arXiv: 1204.6560 [math.AG] | MR

[3] Connes A., “Cohomologie cyclique et foncteurs $\mathrm {Ext}^n$”, C. r. Acad. sci. Paris. Sér. I, 296 (1983), 953–958 | MR | Zbl

[4] Deligne P., Illusie L., “Relèvements modulo $p^2$ et décomposition du complexe de de Rham”, Invent. math., 89 (1987), 247–270 | DOI | MR | Zbl

[5] Feigin B.L., Tsygan B.L., “Additive K-theory”, K-theory, arithmetic and geometry, Semin., Moscow Univ., 1984–1986, Lect. Notes Math., 1289, Springer, Berlin, 1987, 67–209 | DOI | MR

[6] Séminaire de géométrie algébrique du Bois Marie 1960–1961: Revêtements étales et groupe fondamental (SGA 1), Exp. VI, Lect. Notes Math., 224, dirigé par A. Grothendieck, Springer, Berlin, 1971 | MR

[7] Kaledin D., “Non-commutative Hodge-to-de Rham degeneration via the method of Deligne–Illusie”, Pure Appl. Math. Q., 4 (2008), 785–875 | DOI | MR | Zbl

[8] Loday J.-L., Cyclic homology, Grundl. Math. Wiss., 301, 2nd ed., Springer, Berlin, 1998 | MR | Zbl