Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_290_a24, author = {S. V. Konyagin and I. D. Shkredov}, title = {On sum sets of sets having small product set}, journal = {Informatics and Automation}, pages = {304--316}, publisher = {mathdoc}, volume = {290}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a24/} }
S. V. Konyagin; I. D. Shkredov. On sum sets of sets having small product set. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 304-316. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a24/
[1] Bourgain J., Garaev M.Z., “On a variant of sum–product estimates and explicit exponential sum bounds in prime fields”, Math. Proc. Cambridge Philos. Soc., 146:1 (2009), 1–21 | DOI | MR | Zbl
[2] Elekes G., Ruzsa I., “Few sums, many products”, Stud. sci. math. Hung., 40:3 (2003), 301–308 | MR | Zbl
[3] Erdős P., Szemerédi E., “On sums and products of integers”, Studies in pure mathematics, To the memory of Paul Turán, Birkhäuser, Basel, 1983, 213–218 | MR
[4] Katz N.H., Koester P., “On additive doubling and energy”, SIAM J. Discrete Math., 24 (2010), 1684–1693 | DOI | MR | Zbl
[5] Raz O.E., Roche-Newton O., Sharir M., “Sets with few distinct distances do not have heavy lines”, Discrete Math., 338:8 (2015), 1484–1492, arXiv: 1410.1654v1 [math.CO] | DOI | MR | Zbl
[6] Schoen T., “New bounds in Balog–Szemerédi–Gowers theorem”, Combinatorica, 2014 | DOI
[7] Schoen T., Shkredov I.D., “Higher moments of convolutions”, J. Number Theory, 133:5 (2013), 1693–1737 | DOI | MR | Zbl
[8] Shkredov I.D., “Some new inequalities in additive combinatorics”, Moscow J. Comb. Number Theory, 3 (2013), 189–239 | MR | Zbl
[9] Shkredov I.D., “O summakh mnozhestv Semeredi–Trottera”, Tr. MIAN, 289 (2015), 318–327, arXiv: 1410.5662v1 [math.CO] | MR
[10] Solymosi J., “Bounding multiplicative energy by the sumset”, Adv. Math., 222:2 (2009), 402–408 | DOI | MR | Zbl
[11] Tao T., Vu V.H., Additive combinatorics, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl