Capacity of a compact set in a logarithmic potential field
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 254-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a formula for determining the capacity of a compact set in the external field created by a spherically normalized logarithmic potential of a measure supported outside the compact set.
@article{TRSPY_2015_290_a20,
     author = {V. I. Buslaev},
     title = {Capacity of a compact set in a logarithmic potential field},
     journal = {Informatics and Automation},
     pages = {254--271},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a20/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Capacity of a compact set in a logarithmic potential field
JO  - Informatics and Automation
PY  - 2015
SP  - 254
EP  - 271
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a20/
LA  - ru
ID  - TRSPY_2015_290_a20
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Capacity of a compact set in a logarithmic potential field
%J Informatics and Automation
%D 2015
%P 254-271
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a20/
%G ru
%F TRSPY_2015_290_a20
V. I. Buslaev. Capacity of a compact set in a logarithmic potential field. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 254-271. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a20/

[1] Saff E.B., Totik V., Logarithmic potentials with external fields, Grundl. Math. Wiss., 316, Springer, Berlin, 1997 | MR | Zbl

[2] Pólya G., “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss., 1929, 55–62 | Zbl

[3] Grötzsch H., “Über ein Variationsproblem der konformen Abbildung”, Ber. Leipzig, 82 (1930), 251–263 | Zbl

[4] Lavrentieff M., “Sur un problème de maximum dans la représentation conforme”, C. r., 191 (1930), 827–829 | Zbl

[5] Lavrentev M.A., “K teorii konformnykh otobrazhenii”, Tr. Fiz.-mat. in-ta AN SSSR, 5 (1934), 195–245

[6] Kuzmina G.V., Moduli semeistv krivykh i kvadratichnye differentsialy, Tr. MIAN, 139, Nauka, M., 1980 | MR

[7] Strebel K., Quadratic differentials, Ergeb. Math. Grenzgeb. 3. Folge, 5, Springer, Berlin, 1984 | MR | Zbl

[8] Stahl H., “Orthogonal polynomials with complex-valued weight function. I, II”, Constr. Approx., 2 (1986), 225–240 | DOI | MR | Zbl

[9] Stahl H., “Extremal domains associated with an analytic function. I, II”, Complex Var. Theory Appl., 4:4 (1985), 311–324 | DOI | MR | Zbl

[10] Rakhmanov E.A., “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl

[11] Martínez-Finkelshtein A., Rakhmanov E.A., “Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials”, Commun. Math. Phys., 302:1 (2011), 53–111 | DOI | MR | Zbl

[12] Martines-Finkelshtein A., Rakhmanov E.A., Suetin S.P., “Variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnogo kompakta”, Mat. sb., 202:12 (2011), 113–136 | DOI | MR

[13] Buslaev V.I., Suetin S.P., On the existence of compacta of minimal capacity in the problems of rational approximation of multi-valued analytic functions, E-print, 2015, arXiv: 1505.06120 [math.CV]

[14] Gonchar A.A., Rakhmanov E.A., “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Mat. sb., 134:3 (1987), 306–352 | MR | Zbl

[15] Buslaev V.I., “O skhodimosti mnogotochechnykh approksimatsii Pade kusochno analiticheskikh funktsii”, Mat. sb., 204:2 (2013), 39–72 | DOI | MR | Zbl

[16] Buslaev V.I., Martines-Finkelshtein A., Suetin S.P., “Metod vnutrennikh variatsii i suschestvovanie $S$-kompaktov”, Tr. MIAN, 279 (2012), 31–58 | MR | Zbl

[17] Buslaev V.I., “O skhodimosti $m$-tochechnykh approksimatsii Pade nabora mnogoznachnykh analiticheskikh funktsii”, Mat. sb., 206:2 (2015), 5–30 | DOI | MR | Zbl

[18] Baratchart L., Stahl H., Yattselev M., “Weighted extremal domains and best rational approximation”, Adv. Math., 229:1 (2012), 357–407 | DOI | MR | Zbl