Capacity of a compact set in a logarithmic potential field
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 254-271

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a formula for determining the capacity of a compact set in the external field created by a spherically normalized logarithmic potential of a measure supported outside the compact set.
@article{TRSPY_2015_290_a20,
     author = {V. I. Buslaev},
     title = {Capacity of a compact set in a logarithmic potential field},
     journal = {Informatics and Automation},
     pages = {254--271},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a20/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Capacity of a compact set in a logarithmic potential field
JO  - Informatics and Automation
PY  - 2015
SP  - 254
EP  - 271
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a20/
LA  - ru
ID  - TRSPY_2015_290_a20
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Capacity of a compact set in a logarithmic potential field
%J Informatics and Automation
%D 2015
%P 254-271
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a20/
%G ru
%F TRSPY_2015_290_a20
V. I. Buslaev. Capacity of a compact set in a logarithmic potential field. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 254-271. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a20/