Adjoint variables and intertemporal prices in infinite-horizon optimal control problems
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 239-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of adjoint variables involved in the relations of the Pontryagin maximum principle are investigated for a class of infinite-horizon optimal control problems that arise in the study of economic growth processes. New formulations of the maximum principle in terms of intertemporal prices and the conditional value of the capital are established. Several illustrative examples are considered.
@article{TRSPY_2015_290_a19,
     author = {S. M. Aseev},
     title = {Adjoint variables and intertemporal prices in infinite-horizon optimal control problems},
     journal = {Informatics and Automation},
     pages = {239--253},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a19/}
}
TY  - JOUR
AU  - S. M. Aseev
TI  - Adjoint variables and intertemporal prices in infinite-horizon optimal control problems
JO  - Informatics and Automation
PY  - 2015
SP  - 239
EP  - 253
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a19/
LA  - ru
ID  - TRSPY_2015_290_a19
ER  - 
%0 Journal Article
%A S. M. Aseev
%T Adjoint variables and intertemporal prices in infinite-horizon optimal control problems
%J Informatics and Automation
%D 2015
%P 239-253
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a19/
%G ru
%F TRSPY_2015_290_a19
S. M. Aseev. Adjoint variables and intertemporal prices in infinite-horizon optimal control problems. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 239-253. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a19/

[1] Acemoglu D., Introduction to modern economic growth, Princeton Univ. Press, Princeton, NJ, 2008

[2] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[3] Aseev S.M., “O nekotorykh svoistvakh sopryazhennoi peremennoi v sootnosheniyakh printsipa maksimuma Pontryagina dlya zadach optimalnogo ekonomicheskogo rosta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 15–24

[4] Aseev S.M., Besov K.O., Kryazhimskii A.V., “Zadachi optimalnogo upravleniya na beskonechnom intervale vremeni v ekonomike”, UMN, 67:2 (2012), 3–64 | DOI | MR | Zbl

[5] Aseev S.M., Kryazhimskii A.V., “Printsip maksimuma Pontryagina dlya zadachi optimalnogo upravleniya s funktsionalom, zadannym nesobstvennym integralom”, DAN, 394:5 (2004), 583–585 | MR | Zbl

[6] Aseev S.M., Kryazhimskiy A.V., “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control Optim., 43 (2004), 1094–1119 | DOI | MR | Zbl

[7] Aseev S.M., Kryazhimskii A.V., Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta, Tr. MIAN, 257, Nauka, M., 2007 | MR

[8] Aseev S.M., Veliov V.M., “Maximum principle for infinite-horizon optimal control problems with dominating discount”, Dyn. Contin. Discrete Impuls. Syst. B: Appl. Algorithms, 19 (2012), 43–63 | MR | Zbl

[9] Aseev S.M., Veliov V.M., Needle variations in infinite-horizon optimal control, Contemp. Math., 619, Ed. by G. Wolansky, A.J. Zaslavski, Am. Math. Soc., Variational and optimal control problems on unbounded domains, 2014 | DOI | MR

[10] Aseev S.M., Veliov V.M., “Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 41–57

[11] Barro R.J., Sala-i-Martin X., Economic growth, McGraw Hill, New York, 1995

[12] Bellman R., Dynamic programming, Princeton Univ. Press, Princeton, NJ, 1957 | MR | Zbl

[13] Benveniste L.M., Scheinkman J.A., “Duality theory for dynamic optimization models of economics: The continuous time case”, J. Econ. Theory, 27 (1982), 1–19 | DOI | MR | Zbl

[14] Besov K.O., “O neobkhodimykh usloviyakh optimalnosti dlya zadach ekonomicheskogo rosta s beskonechnym gorizontom i lokalno neogranichennoi funktsiei mgnovennoi poleznosti”, Tr. MIAN, 284 (2014), 56–88 | Zbl

[15] Carlson D.A., Haurie A.B., Leizarowitz A., Infinite horizon optimal control: Determenistic and stochastic systems, Springer, Berlin, 1991 | MR

[16] Clarke F., Functional analysis, calculus of variations and optimal control, Grad. Texts Math., 264, Springer, London, 2013 | DOI | MR | Zbl

[17] Dorfman R., “An economic interpretation of optimal control theory”, Amer. Econ. Rev., 59:5 (1969), 817–831 | MR

[18] Halkin H., “Necessary conditions for optimal control problems with infinite horizons”, Econometrica, 42 (1974), 267–272 | DOI | MR | Zbl

[19] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[20] Hotelling H., “The economics of exhaustible resources”, J. Polit. Econ., 39:2 (1931), 137–175 | DOI | MR | Zbl

[21] Łojasiewicz S., Jr., “Invariance of extremals”, Nonlinear controllability and optimal control, Pure Appl. Math., 133, Ed. by H.J. Sussmann, M. Dekker, New York, 1990, 237–261 | MR

[22] Michel P., “On the transversality condition in infinite horizon optimal problems”, Econometrica, 50 (1982), 975–985 | DOI | MR | Zbl

[23] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[24] Sagara N., “Value functions and transversality conditions for infinite-horizon optimal control problems”, Set-Valued Var. Anal., 18 (2010), 1–28 | DOI | MR | Zbl