L\'evy Laplacians and instantons
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 226-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe dual and antidual solutions of the Yang–Mills equations by means of Lévy Laplacians. To this end, we introduce a class of Lévy Laplacians parameterized by the choice of a curve in the group $\mathrm {SO}(4)$. Two approaches are used to define such Laplacians: (i) the Lévy Laplacian can be defined as an integral functional defined by a curve in $\mathrm {SO}(4)$ and a special form of the second-order derivative, or (ii) the Lévy Laplacian can be defined as the Cesàro mean of second-order derivatives along vectors from the orthonormal basis constructed by such a curve. We prove that under some conditions imposed on the curve generating the Lévy Laplacian, a connection in the trivial vector bundle with base $\mathbb R^4$ is an instanton (or an anti-instanton) if and only if the parallel transport generated by the connection is harmonic for such a Lévy Laplacian.
@article{TRSPY_2015_290_a18,
     author = {B. O. Volkov},
     title = {L\'evy {Laplacians} and instantons},
     journal = {Informatics and Automation},
     pages = {226--238},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a18/}
}
TY  - JOUR
AU  - B. O. Volkov
TI  - L\'evy Laplacians and instantons
JO  - Informatics and Automation
PY  - 2015
SP  - 226
EP  - 238
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a18/
LA  - ru
ID  - TRSPY_2015_290_a18
ER  - 
%0 Journal Article
%A B. O. Volkov
%T L\'evy Laplacians and instantons
%J Informatics and Automation
%D 2015
%P 226-238
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a18/
%G ru
%F TRSPY_2015_290_a18
B. O. Volkov. L\'evy Laplacians and instantons. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 226-238. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a18/

[1] Accardi L., Gibilisco P., Volovich I.V., “The Lévy Laplacian and the Yang–Mills equations”, Rend. Lincei. Sci. Fis. Nat., 4:3 (1993), 201–206 | DOI | MR

[2] Accardi L., Gibilisco P., Volovich I.V., “Yang–Mills gauge fields as harmonic functions for the Lévy Laplacian”, Russ. J. Math. Phys., 2:2 (1994), 235–250 | MR | Zbl

[3] Accardi L., Ji U.C., Saitô K., “The exotic (higher order Lévy) Laplacians generate the Markov processes given by distribution derivatives of white noise”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350020 | DOI | MR | Zbl

[4] Akkardi L., Smolyanov O.G., “Operatory Laplasa–Levi v prostranstvakh funktsii na osnaschennykh gilbertovykh prostranstvakh”, Mat. zametki, 72:1 (2002), 145–150 | DOI | MR

[5] Akkardi L., Smolyanov O.G., “Formuly Feinmana dlya evolyutsionnykh uravnenii s laplasianom Levi na beskonechnomernykh mnogoobraziyakh”, DAN, 407:5 (2006), 583–588 | MR

[6] Arefeva I.Ya., Volovich I.V., “Funktsionalnye vysshie zakony sokhraneniya v kalibrovochnykh teoriyakh”, Obobschennye funktsii i ikh primeneniya v matematicheskoi fizike, Tr. Mezhdunar. konf., Moskva, 1980, VTs AN SSSR, M., 1981, 43–49

[7] Gross L., “A Poincarè lemma for connection forms”, J. Funct. Anal., 63 (1985), 1–46 | DOI | MR | Zbl

[8] Léandre R., Volovich I.V., “The Stochastic Lévy Laplacian and Yang–Mills equation on manifolds”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4:2 (2001), 161–172 | DOI | MR | Zbl

[9] Lévy P., Problèmes concrets d'analyse fonctionnelle, Gautier-Villars, Paris, 1951 ; Levi P., Konkretnye problemy funktsionalnogo analiza, Nauka, M., 1967 | MR | Zbl | MR

[10] Sergeev A.G., Garmonicheskie otobrazheniya, Lekts. kursy NOTs, 10, MIAN, M., 2008 | DOI

[11] Volkov B.O., “Lévy-Laplacian and the gauge fields”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15:4 (2012), 1250027 | DOI | MR | Zbl

[12] Volkov B.O., “Quantum probability and Lévy Laplacians”, Russ. J. Math. Phys., 20:2 (2013), 254–256 | DOI | MR | Zbl

[13] Volkov B.O., “Hierarchy of Lévy-Laplacians and quantum stochastic processes”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:4 (2013), 1350027 | DOI | MR