L\'evy Laplacians and instantons
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 226-238

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe dual and antidual solutions of the Yang–Mills equations by means of Lévy Laplacians. To this end, we introduce a class of Lévy Laplacians parameterized by the choice of a curve in the group $\mathrm {SO}(4)$. Two approaches are used to define such Laplacians: (i) the Lévy Laplacian can be defined as an integral functional defined by a curve in $\mathrm {SO}(4)$ and a special form of the second-order derivative, or (ii) the Lévy Laplacian can be defined as the Cesàro mean of second-order derivatives along vectors from the orthonormal basis constructed by such a curve. We prove that under some conditions imposed on the curve generating the Lévy Laplacian, a connection in the trivial vector bundle with base $\mathbb R^4$ is an instanton (or an anti-instanton) if and only if the parallel transport generated by the connection is harmonic for such a Lévy Laplacian.
@article{TRSPY_2015_290_a18,
     author = {B. O. Volkov},
     title = {L\'evy {Laplacians} and instantons},
     journal = {Informatics and Automation},
     pages = {226--238},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a18/}
}
TY  - JOUR
AU  - B. O. Volkov
TI  - L\'evy Laplacians and instantons
JO  - Informatics and Automation
PY  - 2015
SP  - 226
EP  - 238
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a18/
LA  - ru
ID  - TRSPY_2015_290_a18
ER  - 
%0 Journal Article
%A B. O. Volkov
%T L\'evy Laplacians and instantons
%J Informatics and Automation
%D 2015
%P 226-238
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a18/
%G ru
%F TRSPY_2015_290_a18
B. O. Volkov. L\'evy Laplacians and instantons. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 226-238. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a18/