Rational homology of the order complex of zero sets of homogeneous quadratic polynomial systems in~$\mathbb R^3$
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 211-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

The naturally topologized order complex of proper algebraic subsets in $\mathbb R\mathrm P^2$ defined by systems of quadratic forms has the rational homology of $S^{13}$.
@article{TRSPY_2015_290_a17,
     author = {V. A. Vassiliev},
     title = {Rational homology of the order complex of zero sets of homogeneous quadratic polynomial systems in~$\mathbb R^3$},
     journal = {Informatics and Automation},
     pages = {211--225},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a17/}
}
TY  - JOUR
AU  - V. A. Vassiliev
TI  - Rational homology of the order complex of zero sets of homogeneous quadratic polynomial systems in~$\mathbb R^3$
JO  - Informatics and Automation
PY  - 2015
SP  - 211
EP  - 225
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a17/
LA  - ru
ID  - TRSPY_2015_290_a17
ER  - 
%0 Journal Article
%A V. A. Vassiliev
%T Rational homology of the order complex of zero sets of homogeneous quadratic polynomial systems in~$\mathbb R^3$
%J Informatics and Automation
%D 2015
%P 211-225
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a17/
%G ru
%F TRSPY_2015_290_a17
V. A. Vassiliev. Rational homology of the order complex of zero sets of homogeneous quadratic polynomial systems in~$\mathbb R^3$. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 211-225. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a17/

[1] Borel A., Serre J.-P., “Cohomologie d'immeubles et de groupes $S$-arithmétiques”, Topology., 15 (1976), 211–232 | DOI | MR | Zbl

[2] Gorinov A.G., “Real cohomology groups of the space of nonsingular curves of degree 5 in $\mathbf {CP}^2$”, Ann. fac. sci. Toulouse. Math. Sér. 6, 14:3 (2005), 395–434, arXiv: math/0105108 [math.AT] | DOI | MR | Zbl

[3] Kallel S., Karoui R., “Symmetric joins and weighted barycenters”, Adv. Nonlinear Stud., 11 (2011), 117–143, arXiv: math/0602283v3 [math.AT] | MR | Zbl

[4] Serre J.-P., “Homologie singulière des espaces fibrés. Applications”, Ann. Math. Ser. 2, 54 (1951), 425–505 ; Serr Zh.-P., “Singulyarnye gomologii rassloennykh prostranstv”, Rassloennye prostranstva i ikh prilozheniya, Sb. per., Izd-vo inostr. lit., M., 1958, 9–114 | DOI | MR | Zbl | MR

[5] Tommasi O., “Rational cohomology of the moduli space of genus 4 curves”, Compos. math., 141:2 (2005), 359–384 | DOI | MR | Zbl

[6] Vassiliev V.A., Complements of discriminants of smooth maps: Topology and applications, Rev. ed., Transl. Math. Monogr., 98, Amer. Math. Soc., Providence, RI, 1994 | MR

[7] Vasilev V.A., “Gomologii prostranstv odnorodnykh polinomov v $\mathbf R^2$ bez kratnykh nulei”, Tr. MIAN, 221 (1998), 143–148 | MR | Zbl

[8] Vassiliev V.A., “Topological order complexes and resolutions of discriminant sets”, Publ. Inst. Math. Nouv. sér., 66 (1999), 165–185 | MR | Zbl

[9] Vasilev V.A., “Kak vychislyat gomologii prostranstv neosobykh algebraicheskikh proektivnykh giperpoverkhnostei”, Tr. MIAN, 225 (1999), 132–152 | MR | Zbl

[10] Vassiliev V.A., Homology groups of spaces of non-resultant quadratic polynomial systems in $\mathbb R^3$, E-print, 2014, arXiv: 1412.8194 [math.AT] | MR