Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_290_a17, author = {V. A. Vassiliev}, title = {Rational homology of the order complex of zero sets of homogeneous quadratic polynomial systems in~$\mathbb R^3$}, journal = {Informatics and Automation}, pages = {211--225}, publisher = {mathdoc}, volume = {290}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a17/} }
TY - JOUR AU - V. A. Vassiliev TI - Rational homology of the order complex of zero sets of homogeneous quadratic polynomial systems in~$\mathbb R^3$ JO - Informatics and Automation PY - 2015 SP - 211 EP - 225 VL - 290 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a17/ LA - ru ID - TRSPY_2015_290_a17 ER -
%0 Journal Article %A V. A. Vassiliev %T Rational homology of the order complex of zero sets of homogeneous quadratic polynomial systems in~$\mathbb R^3$ %J Informatics and Automation %D 2015 %P 211-225 %V 290 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a17/ %G ru %F TRSPY_2015_290_a17
V. A. Vassiliev. Rational homology of the order complex of zero sets of homogeneous quadratic polynomial systems in~$\mathbb R^3$. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 211-225. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a17/
[1] Borel A., Serre J.-P., “Cohomologie d'immeubles et de groupes $S$-arithmétiques”, Topology., 15 (1976), 211–232 | DOI | MR | Zbl
[2] Gorinov A.G., “Real cohomology groups of the space of nonsingular curves of degree 5 in $\mathbf {CP}^2$”, Ann. fac. sci. Toulouse. Math. Sér. 6, 14:3 (2005), 395–434, arXiv: math/0105108 [math.AT] | DOI | MR | Zbl
[3] Kallel S., Karoui R., “Symmetric joins and weighted barycenters”, Adv. Nonlinear Stud., 11 (2011), 117–143, arXiv: math/0602283v3 [math.AT] | MR | Zbl
[4] Serre J.-P., “Homologie singulière des espaces fibrés. Applications”, Ann. Math. Ser. 2, 54 (1951), 425–505 ; Serr Zh.-P., “Singulyarnye gomologii rassloennykh prostranstv”, Rassloennye prostranstva i ikh prilozheniya, Sb. per., Izd-vo inostr. lit., M., 1958, 9–114 | DOI | MR | Zbl | MR
[5] Tommasi O., “Rational cohomology of the moduli space of genus 4 curves”, Compos. math., 141:2 (2005), 359–384 | DOI | MR | Zbl
[6] Vassiliev V.A., Complements of discriminants of smooth maps: Topology and applications, Rev. ed., Transl. Math. Monogr., 98, Amer. Math. Soc., Providence, RI, 1994 | MR
[7] Vasilev V.A., “Gomologii prostranstv odnorodnykh polinomov v $\mathbf R^2$ bez kratnykh nulei”, Tr. MIAN, 221 (1998), 143–148 | MR | Zbl
[8] Vassiliev V.A., “Topological order complexes and resolutions of discriminant sets”, Publ. Inst. Math. Nouv. sér., 66 (1999), 165–185 | MR | Zbl
[9] Vasilev V.A., “Kak vychislyat gomologii prostranstv neosobykh algebraicheskikh proektivnykh giperpoverkhnostei”, Tr. MIAN, 225 (1999), 132–152 | MR | Zbl
[10] Vassiliev V.A., Homology groups of spaces of non-resultant quadratic polynomial systems in $\mathbb R^3$, E-print, 2014, arXiv: 1412.8194 [math.AT] | MR