On the set of joint representatives of two congruence classes
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 202-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

We estimate how many numbers in a given interval have the property that their residues modulo two different fixed numbers belong to two given sets. The estimates obtained are order sharp.
@article{TRSPY_2015_290_a16,
     author = {Yu. N. Shteinikov},
     title = {On the set of joint representatives of two congruence classes},
     journal = {Informatics and Automation},
     pages = {202--210},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a16/}
}
TY  - JOUR
AU  - Yu. N. Shteinikov
TI  - On the set of joint representatives of two congruence classes
JO  - Informatics and Automation
PY  - 2015
SP  - 202
EP  - 210
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a16/
LA  - ru
ID  - TRSPY_2015_290_a16
ER  - 
%0 Journal Article
%A Yu. N. Shteinikov
%T On the set of joint representatives of two congruence classes
%J Informatics and Automation
%D 2015
%P 202-210
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a16/
%G ru
%F TRSPY_2015_290_a16
Yu. N. Shteinikov. On the set of joint representatives of two congruence classes. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 202-210. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a16/

[1] Bourgain J., Ford K., Konyagin S.V., Shparlinski I.E., “On the divisibility of Fermat quotients”, Mich. Math. J., 59:2 (2010), 313–328 | DOI | MR | Zbl

[2] Gorbachev D.V., “Nekotorye neravenstva dlya diskretnykh polozhitelno opredelennykh funktsii”, Izv. Tulsk. gos. un-ta. Estestv. nauki, 2015, no. 2, 5–12