Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 191-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hamiltonian property and integrability of the Lax equations with spectral parameter on a Riemann surface are considered. The operators of Lax pairs are meromorphic functions of special form on a Riemann surface of arbitrary positive genus with values in an arbitrary semisimple Lie algebra. The study combines the theory of Lax equations with spectral parameter on a Riemann surface, as proposed by I.M. Krichever in 2001, with a “group-theoretic approach.”
@article{TRSPY_2015_290_a15,
     author = {O. K. Sheinman},
     title = {Semisimple {Lie} algebras and {Hamiltonian} theory of finite-dimensional {Lax} equations with spectral parameter on a {Riemann} surface},
     journal = {Informatics and Automation},
     pages = {191--201},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a15/}
}
TY  - JOUR
AU  - O. K. Sheinman
TI  - Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface
JO  - Informatics and Automation
PY  - 2015
SP  - 191
EP  - 201
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a15/
LA  - ru
ID  - TRSPY_2015_290_a15
ER  - 
%0 Journal Article
%A O. K. Sheinman
%T Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface
%J Informatics and Automation
%D 2015
%P 191-201
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a15/
%G ru
%F TRSPY_2015_290_a15
O. K. Sheinman. Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 191-201. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a15/

[1] Gorsky A., Krichever I., Marshakov A, Mironov A, Morozov A., “Integrability and Seiberg–Witten exact solution”, Phys. Lett. B., 355 (1995), 466–474, arXiv: hep-th/9505035 | DOI | MR | Zbl

[2] Hitchin N., “Stable bundles and integrable systems”, Duke Math. J., 54 (1987), 91–114 | DOI | MR | Zbl

[3] Krichever I., “Vector bundles and Lax equations on algebraic curves”, Commun. Math. Phys., 229 (2002), 229–269 | DOI | MR | Zbl

[4] Krichever I.M., Novikov S.P., “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN., 35:6 (1980), 47–68 | MR | Zbl

[5] Krichever I.M., Sheinman O.K., “Algebry operatorov Laksa”, Funkts. analiz i ego pril., 41:4 (2007), 46–59, arXiv: math/0701648 [math.RT] | DOI | MR | Zbl

[6] Novikov S.P., Taimanov I.A., Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2005

[7] Reiman A.G., Semenov-Tyan-Shanskii M.A., Integriruemye sistemy: Teoretiko-gruppovoi podkhod, In-t kompyut. issled., Moskva; Izhevsk, 2003

[8] Shlikhenmaier M., “Mnogotochechnye algebry operatorov Laksa. Pochti graduirovannaya struktura i tsentralnye rasshireniya”, Mat. sb., 205:5 (2014), 117–160, arXiv: 1304.3902 [math.QA] | DOI | MR

[9] Shlikhenmaier M., Sheinman O.K., “Tsentralnye rasshireniya algebr operatorov Laksa”, UMN, 63:4 (2008), 131–172, arXiv: 0711.4688 [math.QA] | DOI | MR

[10] Sheinman O.K., Current algebras on Riemann surfaces: New results and applications, De Gruyter Exp. Math., 58, W. de Gruyter, Berlin, 2012 | MR | Zbl

[11] Sheinman O.K., “Algebry operatorov Laksa tipa $G_2$”, DAN, 455:1 (2014), 23–25, arXiv: 1304.2510 [math.RT] | MR | Zbl

[12] Sheinman O.K., “Lax operator algebras of type $G_2$”, Topology, geometry, integrable systems, and mathematical physics: Novikov's seminar 2012–2014, AMS Transl. Ser. 2, 234, Adv. Math. Sci., V. 67, Ed. by V.M. Buchstaber, B.A. Dubrovin, I.M. Krichever, Amer. Math. Soc., Providence, RI, 2014, 373–392 | MR

[13] Sheinman O.K., “Algebry operatorov Laksa i graduirovki na poluprostykh algebrakh Li”, DAN, 461:2 (2015), 143–145 | Zbl

[14] Sheinman O.K., “Lax operator algebras and gradings on semi-simple Lie algebras”, Transform. Groups (to appear) , arXiv: 1406.5017 [math.RA] | MR

[15] Sheinman O.K., “Ierarkhii konechnomernykh uravnenii Laksa so spektralnym parametrom na rimanovoi poverkhnosti i poluprostye algebry Li”, TMF (to appear)

[16] Tyurin A.N., “Klassifikatsiya vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. mat., 29:3 (1965), 657–688 | Zbl

[17] Vinberg E.B., Gorbatsevich V.V., Onischik A.L., Stroenie grupp i algebr Li, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 41, VINITI, M., 1990