Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 191-201

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hamiltonian property and integrability of the Lax equations with spectral parameter on a Riemann surface are considered. The operators of Lax pairs are meromorphic functions of special form on a Riemann surface of arbitrary positive genus with values in an arbitrary semisimple Lie algebra. The study combines the theory of Lax equations with spectral parameter on a Riemann surface, as proposed by I.M. Krichever in 2001, with a “group-theoretic approach.”
@article{TRSPY_2015_290_a15,
     author = {O. K. Sheinman},
     title = {Semisimple {Lie} algebras and {Hamiltonian} theory of finite-dimensional {Lax} equations with spectral parameter on a {Riemann} surface},
     journal = {Informatics and Automation},
     pages = {191--201},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a15/}
}
TY  - JOUR
AU  - O. K. Sheinman
TI  - Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface
JO  - Informatics and Automation
PY  - 2015
SP  - 191
EP  - 201
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a15/
LA  - ru
ID  - TRSPY_2015_290_a15
ER  - 
%0 Journal Article
%A O. K. Sheinman
%T Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface
%J Informatics and Automation
%D 2015
%P 191-201
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a15/
%G ru
%F TRSPY_2015_290_a15
O. K. Sheinman. Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 191-201. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a15/