Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_290_a14, author = {E. V. Shchepin}, title = {On the complexity of constructing multiprocessor little-preemptive schedules}, journal = {Informatics and Automation}, pages = {178--190}, publisher = {mathdoc}, volume = {290}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a14/} }
E. V. Shchepin. On the complexity of constructing multiprocessor little-preemptive schedules. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 178-190. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a14/
[1] Gonzalez T., Sahni S., “Open shop scheduling to minimize finish time”, J. Assoc. Comput. Mach., 23 (1976), 665–679 | DOI | MR | Zbl
[2] Lawler E.L., Labetoulle J., “On preemptive scheduling of unrelated parallel processors by linear programming”, J. Assoc. Comput. Mach., 25 (1978), 612–619 | DOI | MR | Zbl
[3] Shchepin E.V., Vakhania N., “On the geometry, preemptions and complexity of multiprocessor and shop scheduling”, Ann. Oper. Res., 159 (2008), 183–213 | DOI | MR | Zbl
[4] Shchepin E.V., Vakhania N., “A note on the proof of the complexity of the little-preemptive open-shop problem”, Ann. Oper. Res., 191 (2011), 251–253 | DOI | MR | Zbl
[5] Shchepin E., Vakhania N., “Little-preemptive scheduling on unrelated processors”, J. Math. Model. Algorithms, 1 (2002), 43–56 | DOI | MR | Zbl
[6] Shchepin E.V., Vakhania N., “Task distributions on multiprocessor systems”, Theoretical computer science: Exploring new frontiers of theoretical informatics, Proc. Int. Conf. IFIP TCS 2000, Sendai (Japan), 2000, Lect. Notes Comput. Sci., 1872, Springer, Berlin, 2000, 112–125 | DOI | Zbl
[7] Schepin E.V., “K geometrii mnogoprotsessornykh raspredelenii”, Tr. MIAN, 239 (2002), 323–331
[8] Shchepin E.V., Vakhania N., “An optimal rounding gives a better approximation for scheduling unrelated machines”, Oper. Res. Lett., 33 (2005), 127–133 | DOI | MR | Zbl