Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_290_a13, author = {S. A. Melikhov}, title = {Transverse fundamental group and projected embeddings}, journal = {Informatics and Automation}, pages = {166--177}, publisher = {mathdoc}, volume = {290}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a13/} }
S. A. Melikhov. Transverse fundamental group and projected embeddings. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 166-177. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a13/
[1] Akhmetev P.M., “Ob izotopicheskoi i diskretnoi realizatsiyakh otobrazhenii $n$-mernoi sfery v evklidovom prostranstve”, Mat. sb., 187:7 (1996), 3–34 | DOI | MR | Zbl
[2] Akhmetiev P.M., Repovš D., Skopenkov A.B., “Obstructions to approximating maps of $n$-manifolds into $\mathbb R ^{2n}$ by embeddings”, Topology Appl., 123 (2002), 3–14 | DOI | MR | Zbl
[3] Buoncristiano S., Rourke C.P., Sanderson B.J., A geometric approach to homology theory, LMS Lect. Note Ser., 18, Cambridge Univ. Press, Cambridge, 1976 | MR | Zbl
[4] Clark A., Fokkink R., “Embedding solenoids”, Fundam. math., 181 (2004), 111–124 | DOI | MR | Zbl
[5] Duvall P.F., Husch L.S., “Embedding finite covering spaces into bundles”, Topol. Proc., 4 (1979), 361–370 | MR
[6] Goldsmith D.L., “Homotopy of braids—in answer to a question of E. Artin”, Topology conference: Virginia Polytech. Inst. and State Univ., 1973, Lect. Notes Math., 375, Springer, Berlin, 1974, 91–96 | DOI | MR
[7] Habegger N., Lin X.-S., “The classification of links up to link-homotopy”, J. Amer. Math. Soc., 3 (1990), 389–419 | DOI | MR | Zbl
[8] Habegger N., Lin X.-S., “On link concordance and Milnor's $\bar \mu $ invariants”, Bull. London Math. Soc., 30 (1998), 419–428 | DOI | MR | Zbl
[9] Hansen V.L., “Polynomial covering spaces and homomorphisms into the braid groups”, Pac. J. Math., 81 (1979), 399–410 | DOI | MR | Zbl
[10] Hansen V.L., Braids and coverings: Selected topics, LMS Stud. Texts, 18, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl
[11] Hillman J., Algebraic invariants of links, Ser. Knots Everything, 52, 2nd ed., World Sci., Singapore, 2012 | MR | Zbl
[12] Humphries S.P., “Torsion-free quotients of braid groups”, Int. J. Algebra Comput., 11 (2001), 363–373 | DOI | MR | Zbl
[13] Keesling J., Wilson D.C., “Embedding $T^n$-like continua in Euclidean space”, Topology Appl., 21 (1985), 241–249 | DOI | MR | Zbl
[14] Melikhov S.A., “Vyvorachivaniya sfer i realizatsiya otobrazhenii”, Tr. MIAN, 247 (2004), 159–181 | MR | Zbl
[15] Melikhov S.A., “The van Kampen obstruction and its relatives”, Tr. MIAN, 266 (2009), 149–183 | MR | Zbl
[16] Melikhov S.A., Shchepin E.V., The telescope approach to embeddability of compacta, E-print, 2006, arXiv: math/0612085 [math.GT]
[17] Petersen P.V., “Fatness of covers”, J. reine angew. Math., 403 (1990), 154–165 | MR
[18] Yamamoto M., “Lifting a generic map of a surface into the plane to an embedding into 4-space”, Ill. J. Math., 51 (2007), 705–721 | MR | Zbl