Transverse fundamental group and projected embeddings
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 166-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a generic degree $d$ smooth map $f:N^n\to M^n$ we introduce its “transverse fundamental group” $\pi (f)$, which reduces to $\pi _1(M)$ in the case where $f$ is a covering, and in general admits a monodromy homomorphism $\pi (f)\to S_{|d|}$; nevertheless, we show that $\pi (f)$ can be nontrivial even for rather simple degree $1$ maps $S^n\to S^n$. We apply $\pi (f)$ to the problem of lifting $f$ to an embedding $N\hookrightarrow M\times \mathbb R^2$: for such a lift to exist, the monodromy $\pi (f)\to S_{|d|}$ must factor through the group of concordance classes of $|d|$-component string links. At least if $|d|7$, this requires $\pi (f)$ to be torsion-free.
@article{TRSPY_2015_290_a13,
     author = {S. A. Melikhov},
     title = {Transverse fundamental group and projected embeddings},
     journal = {Informatics and Automation},
     pages = {166--177},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a13/}
}
TY  - JOUR
AU  - S. A. Melikhov
TI  - Transverse fundamental group and projected embeddings
JO  - Informatics and Automation
PY  - 2015
SP  - 166
EP  - 177
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a13/
LA  - ru
ID  - TRSPY_2015_290_a13
ER  - 
%0 Journal Article
%A S. A. Melikhov
%T Transverse fundamental group and projected embeddings
%J Informatics and Automation
%D 2015
%P 166-177
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a13/
%G ru
%F TRSPY_2015_290_a13
S. A. Melikhov. Transverse fundamental group and projected embeddings. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 166-177. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a13/

[1] Akhmetev P.M., “Ob izotopicheskoi i diskretnoi realizatsiyakh otobrazhenii $n$-mernoi sfery v evklidovom prostranstve”, Mat. sb., 187:7 (1996), 3–34 | DOI | MR | Zbl

[2] Akhmetiev P.M., Repovš D., Skopenkov A.B., “Obstructions to approximating maps of $n$-manifolds into $\mathbb R ^{2n}$ by embeddings”, Topology Appl., 123 (2002), 3–14 | DOI | MR | Zbl

[3] Buoncristiano S., Rourke C.P., Sanderson B.J., A geometric approach to homology theory, LMS Lect. Note Ser., 18, Cambridge Univ. Press, Cambridge, 1976 | MR | Zbl

[4] Clark A., Fokkink R., “Embedding solenoids”, Fundam. math., 181 (2004), 111–124 | DOI | MR | Zbl

[5] Duvall P.F., Husch L.S., “Embedding finite covering spaces into bundles”, Topol. Proc., 4 (1979), 361–370 | MR

[6] Goldsmith D.L., “Homotopy of braids—in answer to a question of E. Artin”, Topology conference: Virginia Polytech. Inst. and State Univ., 1973, Lect. Notes Math., 375, Springer, Berlin, 1974, 91–96 | DOI | MR

[7] Habegger N., Lin X.-S., “The classification of links up to link-homotopy”, J. Amer. Math. Soc., 3 (1990), 389–419 | DOI | MR | Zbl

[8] Habegger N., Lin X.-S., “On link concordance and Milnor's $\bar \mu $ invariants”, Bull. London Math. Soc., 30 (1998), 419–428 | DOI | MR | Zbl

[9] Hansen V.L., “Polynomial covering spaces and homomorphisms into the braid groups”, Pac. J. Math., 81 (1979), 399–410 | DOI | MR | Zbl

[10] Hansen V.L., Braids and coverings: Selected topics, LMS Stud. Texts, 18, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[11] Hillman J., Algebraic invariants of links, Ser. Knots Everything, 52, 2nd ed., World Sci., Singapore, 2012 | MR | Zbl

[12] Humphries S.P., “Torsion-free quotients of braid groups”, Int. J. Algebra Comput., 11 (2001), 363–373 | DOI | MR | Zbl

[13] Keesling J., Wilson D.C., “Embedding $T^n$-like continua in Euclidean space”, Topology Appl., 21 (1985), 241–249 | DOI | MR | Zbl

[14] Melikhov S.A., “Vyvorachivaniya sfer i realizatsiya otobrazhenii”, Tr. MIAN, 247 (2004), 159–181 | MR | Zbl

[15] Melikhov S.A., “The van Kampen obstruction and its relatives”, Tr. MIAN, 266 (2009), 149–183 | MR | Zbl

[16] Melikhov S.A., Shchepin E.V., The telescope approach to embeddability of compacta, E-print, 2006, arXiv: math/0612085 [math.GT]

[17] Petersen P.V., “Fatness of covers”, J. reine angew. Math., 403 (1990), 154–165 | MR

[18] Yamamoto M., “Lifting a generic map of a surface into the plane to an embedding into 4-space”, Ill. J. Math., 51 (2007), 705–721 | MR | Zbl