Manifolds of solutions for Hirzebruch functional equations
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 136-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the $n$th Hirzebruch equation we introduce the notion of universal manifold $\mathcal M_n$ of formal solutions. It is shown that the manifold $\mathcal M_n$, where $n>1$, is algebraic and its dimension is not greater than $n+1$. We give a family of polynomials generating the relation ideal in the polynomial ring on $\mathcal M_n$. In the case $n=2$ the generators of this ideal are described. As a corollary we obtain an effective description of the manifold $\mathcal M_2$ and therefore all series determining complex Hirzebruch genera that are fiberwise multiplicative on projectivizations of complex vector bundles. A family of analytic solutions of the second Hirzebruch equation is described in terms of Weierstrass elliptic functions and in terms of Baker–Akhiezer functions of elliptic curves. For this functions the curves differ, yet the series expansions in the vicinity of $0$ coincide.
@article{TRSPY_2015_290_a10,
     author = {V. M. Buchstaber and E. Yu. Bunkova},
     title = {Manifolds of solutions for {Hirzebruch} functional equations},
     journal = {Informatics and Automation},
     pages = {136--148},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a10/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - E. Yu. Bunkova
TI  - Manifolds of solutions for Hirzebruch functional equations
JO  - Informatics and Automation
PY  - 2015
SP  - 136
EP  - 148
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a10/
LA  - ru
ID  - TRSPY_2015_290_a10
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A E. Yu. Bunkova
%T Manifolds of solutions for Hirzebruch functional equations
%J Informatics and Automation
%D 2015
%P 136-148
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a10/
%G ru
%F TRSPY_2015_290_a10
V. M. Buchstaber; E. Yu. Bunkova. Manifolds of solutions for Hirzebruch functional equations. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 136-148. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a10/

[1] Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Vieweg, Braunschweig, 1992 | MR | Zbl

[2] Bukhshtaber V.M., Netai E.Yu., “$\mathbb CP(2)$-multiplikativnye rody Khirtsebrukha i ellipticheskie kogomologii”, UMN, 69:4 (2014), 181–182 | DOI | MR

[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl

[4] Krichever I.M., “Obobschennye ellipticheskie rody i funktsii Beikera–Akhiezera”, Mat. zametki, 47:2 (1990), 34–45 | MR

[5] Ochanine S., “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | MR | Zbl

[6] Tate J.T., “The arithmetic of elliptic curves”, Invent. math., 23 (1974), 179–206 | DOI | MR | Zbl

[7] Bukhshtaber V.M., Bunkova E.Yu., “Formalnye gruppy Krichevera”, Funkts. analiz i ego pril., 45:2 (2011), 23–44 | DOI | MR

[8] Gorodentsev A.L., Algebra: Uchebnik dlya studentov-matematikov, Ch. 1, MTsNMO, M., 2013

[9] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[10] Fulton W., Young tableaux: With applications to representation theory and geometry, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[11] Buchstaber V.M., Terzić S., “Equivariant complex structures on homogeneous spaces and their cobordism classes”, Geometry, topology, and mathematical physics, S.P. Novikov's seminar, 2006–2007, Amer. Math. Soc., Providence, RI, 2008, 27–57, arXiv: 0801.3108 [math.AT] | MR | Zbl

[12] Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973

[13] Novikov S.P., “Operatory Adamsa i nepodvizhnye tochki”, Izv. AN SSSR. Ser. mat., 32:6 (1968), 1245–1263 | MR | Zbl

[14] Bukhshtaber V.M., “Funktsionalnye uravneniya, assotsiirovannye s teoremami slozheniya dlya ellipticheskikh funktsii, i dvuznachnye algebraicheskie gruppy”, UMN, 45:3 (1990), 185–186 | MR | Zbl