Generalized non-commutative degeneration conjecture
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 7-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a generalization of the Kontsevich–Soibelman conjecture on the degeneration of the Hochschild-to-cyclic spectral sequence for a smooth compact differential graded category. Our conjecture states identical vanishing of a certain map between bi-additive invariants of arbitrary small differential graded categories over a field of characteristic zero. We show that this generalized conjecture follows from the Kontsevich–Soibelman conjecture and the so-called conjecture on smooth categorical compactification.
@article{TRSPY_2015_290_a0,
     author = {A. I. Efimov},
     title = {Generalized non-commutative degeneration conjecture},
     journal = {Informatics and Automation},
     pages = {7--17},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a0/}
}
TY  - JOUR
AU  - A. I. Efimov
TI  - Generalized non-commutative degeneration conjecture
JO  - Informatics and Automation
PY  - 2015
SP  - 7
EP  - 17
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a0/
LA  - ru
ID  - TRSPY_2015_290_a0
ER  - 
%0 Journal Article
%A A. I. Efimov
%T Generalized non-commutative degeneration conjecture
%J Informatics and Automation
%D 2015
%P 7-17
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a0/
%G ru
%F TRSPY_2015_290_a0
A. I. Efimov. Generalized non-commutative degeneration conjecture. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 7-17. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a0/

[1] Cisinski D.-C., Tabuada G., “Non-connective $K$-theory via universal invariants”, Compos. math., 147 (2011), 1281–1320 | DOI | MR | Zbl

[2] Connes A., Noncommutative geometry, Acad. Press, San Diego, CA, 1994 | MR | Zbl

[3] Deligne P., “Théorème de Lefschetz et critères de dégénérescence de suites spectrales”, Publ. Math. Inst. Hautes Étud. Sci., 35 (1968), 107–126 | DOI | MR | Zbl

[4] Deligne P., Illusie L., “Relèvements modulo $p^2$ et décomposition du complexe de de Rham”, Invent. math., 89 (1987), 247–270 | DOI | MR | Zbl

[5] Drinfeld V., “DG quotients of DG categories”, J. Algebra, 272:2 (2004), 643–691 | DOI | MR | Zbl

[6] Efimov A.I., Homotopy finiteness of some DG categories from algebraic geometry, E-print, 2013, arXiv: 1308.0135 [math.AG]

[7] Feigin B.L., Tsygan B.L., “Kogomologii algebr Li obobschenno-yakobievykh matrits”, Funkts. analiz i ego pril., 17:2 (1983), 86–87 | MR | Zbl

[8] Griffiths P., Harris J., Principles of algebraic geometry, J. Wiley Sons, New York, 1978 | MR | Zbl

[9] Hironaka H., “Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II”, Ann. Math. Ser. 2, 79 (1964), 109–203 | DOI | MR | Zbl

[10] Hodge W.V.D., The theory and applications of harmonic integrals, Cambridge Univ. Press, Cambridge, 1941 | MR

[11] Kaledin D., “Non-commutative Hodge-to-de Rham degeneration via the method of Deligne–Illusie”, Pure Appl. Math. Q., 4:3 (2008), 785–875 | DOI | MR | Zbl

[12] Keller B., “Deriving DG categories”, Ann. sci. Éc. Norm. Supér. Sér. 4, 27:1 (1994), 63–102 | MR | Zbl

[13] Keller B., “On the cyclic homology of ringed spaces and schemes”, Doc. math. J. DMV, 3 (1998), 231–259 | MR | Zbl

[14] Keller B., “Invariance and localization for cyclic homology of DG algebras”, J. Pure Appl. Algebra, 123:1–3 (1998), 223–273 | DOI | MR | Zbl

[15] Keller B., “On differential graded categories”, Proc. Int. Congr. Math., Madrid, 2006, V. 2, Eur. Math. Soc., Zürich, 2006, 151–190 | MR | Zbl

[16] Kontsevich M., Soibelman Y., “Notes on $A_\infty $-algebras, $A_\infty $-categories and non-commutative geometry”, Homological mirror symmetry: New developments and perspectives, Lect. Notes Phys., 757, Ed. by A. Kapustin, M. Kreuzer, K.-G. Schlesinger, Springer, Berlin, 2009, 153–219 | MR | Zbl

[17] Loday J.-L., Cyclic homology, Grundl. Math. Wiss., 301, Springer, Berlin, 1992 | MR | Zbl

[18] Lunts V.A., Schnürer O.M., “Smoothness of equivariant derived categories”, Proc. London Math. Soc. Ser. 3, 108:5 (2014), 1226–1276 | DOI | MR | Zbl

[19] Nagata M., “A generalization of the imbedding problem of an abstract variety in a complete variety”, J. Math. Kyoto Univ., 3 (1963), 89–102 | MR | Zbl

[20] Shklyarov D., “Hirzebruch–Riemann–Roch-type formula for DG algebras”, Proc. London Math. Soc. Ser. 3, 106:1 (2013), 1–32 | DOI | MR | Zbl

[21] Tabuada G., “Invariants additifs de dg-catégories”, Int. Math. Res. Not., 2005:53 (2005), 3309–3339 | DOI | MR | Zbl

[22] Toën B., Vaquié M., “Moduli of objects in dg-categories”, Ann. sci. Éc. Norm. Supér. Sér. 4, 40:3 (2007), 387–444 | MR | Zbl

[23] Tsygan B.L., “Gomologii matrichnykh algebr Li nad koltsami i gomologii Khokhshilda”, UMN, 38:2 (1983), 217–218 | MR | Zbl

[24] Waldhausen F., “Algebraic K-theory of spaces”, Algebraic and geometric topology, Proc. Conf., New Brunswick, NJ, 1983, Lect. Notes Math., 1126, Springer, Berlin, 1985, 318–419 | DOI | MR