Generalized non-commutative degeneration conjecture
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 7-17

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a generalization of the Kontsevich–Soibelman conjecture on the degeneration of the Hochschild-to-cyclic spectral sequence for a smooth compact differential graded category. Our conjecture states identical vanishing of a certain map between bi-additive invariants of arbitrary small differential graded categories over a field of characteristic zero. We show that this generalized conjecture follows from the Kontsevich–Soibelman conjecture and the so-called conjecture on smooth categorical compactification.
@article{TRSPY_2015_290_a0,
     author = {A. I. Efimov},
     title = {Generalized non-commutative degeneration conjecture},
     journal = {Informatics and Automation},
     pages = {7--17},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a0/}
}
TY  - JOUR
AU  - A. I. Efimov
TI  - Generalized non-commutative degeneration conjecture
JO  - Informatics and Automation
PY  - 2015
SP  - 7
EP  - 17
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a0/
LA  - ru
ID  - TRSPY_2015_290_a0
ER  - 
%0 Journal Article
%A A. I. Efimov
%T Generalized non-commutative degeneration conjecture
%J Informatics and Automation
%D 2015
%P 7-17
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a0/
%G ru
%F TRSPY_2015_290_a0
A. I. Efimov. Generalized non-commutative degeneration conjecture. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 7-17. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a0/