Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_289_a8, author = {A. T. Il'ichev}, title = {Envelope solitary waves and dark solitons at a water--ice interface}, journal = {Informatics and Automation}, pages = {163--177}, publisher = {mathdoc}, volume = {289}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a8/} }
A. T. Il'ichev. Envelope solitary waves and dark solitons at a water--ice interface. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 163-177. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a8/
[1] Ilichev A. T., Uedinennye volny v modelyakh gidromekhaniki, Fizmatlit, M., 2003
[2] Iooss G., Kirchgässner K., “Bifurcation d'ondes solitaires en présence d'une faible tension superficielle”, C. r. Acad. sci. Paris Sér. 1, 311:5 (1990), 265–268 | MR | Zbl
[3] Dias F., Iooss G., “Capillary-gravity solitary waves with damped oscillations”, Physica D, 65:4 (1993), 399–323 | DOI | MR
[4] Benjamin T. B., Feir J. E., “The disintegration of wave trains on deep water. I: Theory”, J. Fluid Mech., 27 (1967), 417–430 | DOI | Zbl
[5] Bridges T. J., Mielke A., “A proof of the Banjamin–Feir instability”, Arch. Ration. Mech. Anal., 133:2 (1995), 145–198 | DOI | MR | Zbl
[6] Kirchgässner K., “Wave solutions of reversible systems and applications”, J. Diff. Eqns., 45:1 (1982), 113–127 | DOI | MR
[7] Iooss G., Pérouème M. C., “Perturbed homoclinic solutions in reversible 1:1 resonance vector fields”, J. Diff. Eqns., 102:1 (1993), 62–88 | DOI | MR | Zbl
[8] Iooss G., Adelmeyer M., Topics in bifurcation theory and applications, 2nd ed., World Scientific, Singapore, 1998 | MR | Zbl
[9] Haragus M., Iooss G., Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems, Springer, London, 2011 | MR | Zbl
[10] Pliss V. A., “O printsipe svedeniya v teorii ustoichivosti dvizheniya”, DAN SSSR, 154:5 (1964), 1044–1046 | MR | Zbl
[11] Mielke A., “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Methods Appl. Sci., 10:1 (1988), 51–66 | DOI | MR | Zbl
[12] Vanderbauwhede A., Iooss G., “Center manifold theory in infinite dimensions”, Dyn. Rep. Expo. Dyn. Syst. New Ser., 1 (1992), 125–163 | MR | Zbl
[13] Elphick C., Tirapegui E., Brachet M. E., Coullet P., Iooss G., “A simple global characterization for normal forms of singular vector fields”, Physica D, 29:1–2 (1987), 95–127 | DOI | MR | Zbl
[14] Müller A., Ettema R., “Dynamic response of an ice-breaker hull to ice breaking”, Proc. 7th IAHR Int. Symp. Ice (Hamburg, 1984), v. 2, Hamburg, 1984, 287–296
[15] Love A. E. H., A treatise on the mathematical theory of elasticity, Univ. Press, Cambridge, 1927 | Zbl
[16] Forbes L. K., “Surface waves of large amplitude beneath an elastic sheet. I: High-order series solution”, J. Fluid Mech., 169 (1986), 409–428 | DOI | MR | Zbl
[17] Iooss G., Kirchgässner K., “Water waves for small surface tension: An approach via normal form”, Proc. R. Soc. Edinb. A, 122 (1992), 267–299 | DOI | MR | Zbl
[18] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR
[19] Ilichev A. T., Tomashpolskii V. Ya., “Solitonopodobnye struktury na poverkhnosti zhidkosti pod ledyanym pokrovom”, TMF, 182:2 (2015), 277–293 | DOI
[20] Dias F., Iooss G., “Ondes solitaires “noires” à l'interface entre deux fluides en présence de tension superficielle”, C. r. Acad. sci. Paris Sér. 1, 319:1 (1994), 89–93 | MR | Zbl
[21] Dias F., Iooss G., “Capillary-gravity interfacial waves in infinite depth”, Eur. J. Mech. B: Fluids, 15:3 (1996), 367–393 | MR | Zbl