On a conjugacy problem in billiard dynamics
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 309-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study symmetric billiard tables for which the billiard map is locally (near an elliptic periodic orbit of period $2$) conjugate to a rigid rotation. In the previous paper (Physica D 255, 31–34 (2013)), we obtained an equation (called below the conjugacy equation) for such tables and proved that if $\alpha $, the rotation angle, is rationally incommensurable with $\pi $, then the conjugacy equation has a solution in the category of formal series. In the same paper there is also numerical evidence that for “good” rotation angles the series have positive radii of convergence. In the present paper we carry out a further study (both analytic and numerical) of the conjugacy equation. We discuss its symmetries, dependence of the convergence radius on $\alpha $, and other aspects.
@article{TRSPY_2015_289_a16,
     author = {D. V. Treschev},
     title = {On a conjugacy problem in billiard dynamics},
     journal = {Informatics and Automation},
     pages = {309--317},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a16/}
}
TY  - JOUR
AU  - D. V. Treschev
TI  - On a conjugacy problem in billiard dynamics
JO  - Informatics and Automation
PY  - 2015
SP  - 309
EP  - 317
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a16/
LA  - ru
ID  - TRSPY_2015_289_a16
ER  - 
%0 Journal Article
%A D. V. Treschev
%T On a conjugacy problem in billiard dynamics
%J Informatics and Automation
%D 2015
%P 309-317
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a16/
%G ru
%F TRSPY_2015_289_a16
D. V. Treschev. On a conjugacy problem in billiard dynamics. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 309-317. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a16/

[1] Arnaud M.-C., “$C^1$-generic billiard tables have a dense set of periodic points”, Regular Chaotic Dyn., 18:6 (2013), 697–702 | DOI | MR | Zbl

[2] Birkhoff G. D., Dynamical systems, Colloq. Publ., 9, Amer. Math. Soc., New York, 1927 | Zbl

[3] Bolotin S. V., “Integriruemye bilyardy Birkgofa”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1990, no. 2, 33–36 | MR | Zbl

[4] Bolotin S. V., “Integriruemye bilyardy na poverkhnostyakh postoyannoi krivizny”, Mat. zametki, 51:2 (1992), 20–28 | MR | Zbl

[5] Kozlov V. V., Treshchev D. V., Billiards: A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl

[6] Treschev D., “Billiard map and rigid rotation”, Physica D, 255 (2013), 31–34 | DOI | MR | Zbl

[7] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl