Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_289_a16, author = {D. V. Treschev}, title = {On a conjugacy problem in billiard dynamics}, journal = {Informatics and Automation}, pages = {309--317}, publisher = {mathdoc}, volume = {289}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a16/} }
D. V. Treschev. On a conjugacy problem in billiard dynamics. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 309-317. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a16/
[1] Arnaud M.-C., “$C^1$-generic billiard tables have a dense set of periodic points”, Regular Chaotic Dyn., 18:6 (2013), 697–702 | DOI | MR | Zbl
[2] Birkhoff G. D., Dynamical systems, Colloq. Publ., 9, Amer. Math. Soc., New York, 1927 | Zbl
[3] Bolotin S. V., “Integriruemye bilyardy Birkgofa”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1990, no. 2, 33–36 | MR | Zbl
[4] Bolotin S. V., “Integriruemye bilyardy na poverkhnostyakh postoyannoi krivizny”, Mat. zametki, 51:2 (1992), 20–28 | MR | Zbl
[5] Kozlov V. V., Treshchev D. V., Billiards: A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl
[6] Treschev D., “Billiard map and rigid rotation”, Physica D, 255 (2013), 31–34 | DOI | MR | Zbl
[7] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl