Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_289_a14, author = {A. G. Sergeev}, title = {Adiabatic limit in the {Ginzburg--Landau} and {Seiberg--Witten} equations}, journal = {Informatics and Automation}, pages = {242--303}, publisher = {mathdoc}, volume = {289}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a14/} }
A. G. Sergeev. Adiabatic limit in the Ginzburg--Landau and Seiberg--Witten equations. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 242-303. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a14/
[1] Atiyah M. F., Hitchin N., The geometry and dynamics of magnetic monopoles, Princeton Univ. Press, Princeton, NJ, 1988 | MR | Zbl
[2] Bradlow S. B., “Vortices in holomorphic line bundles over closed Kähler manifolds”, Commun. Math. Phys., 135 (1990), 1–17 | DOI | MR | Zbl
[3] Domrin A. V., “Analogi vikhrei Ginzburga–Landau”, TMF, 124:1 (2000), 18–35 | DOI | MR | Zbl
[4] Donaldson S. K., “An application of gauge theory to four dimensional topology”, J. Diff. Geom., 18 (1983), 279–315 | MR | Zbl
[5] García-Prada O., “A direct existence proof for the vortex equations over a compact Riemann surface”, Bull. London Math. Soc., 26 (1994), 88–96 | DOI | MR | Zbl
[6] Gromov M., “Pseudo holomorphic curves in symplectic manifolds”, Invent. math., 82 (1985), 307–347 | DOI | MR | Zbl
[7] Jaffe A., Taubes C., Vortices and monopoles: Structure of static gauge theories, Birkhäuser, Boston, 1980 | MR | Zbl
[8] Kazdan J. L., Warner F. W., “Curvature functions for compact 2-manifolds”, Ann. Math. Ser. 2, 99 (1974), 14–47 | DOI | MR | Zbl
[9] Kotschick D., “The Seiberg–Witten invariants of symplectic four-manifolds (after C. H. Taubes)”, Séminaire Burbaki, Volume 1995/96. Exposés 805–819, Astérisque, 241, Soc. math. France, Paris, 1997, Exp. 812, 195–220 | MR | Zbl
[10] Kronheimer P. B., Mrowka T. S., “The genus of embedded surfaces in the projective plane”, Math. Res. Lett., 1 (1994), 797–808 | DOI | MR | Zbl
[11] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, Ch. 2, v. 5, Statisticheskaya fizika, Fizmatlit, M., 2002
[12] Lawson H. B. (Jr.), Michelsohn M.-L., Spin geometry, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl
[13] Manton N. S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR | Zbl
[14] Morgan J. W., The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Princeton Univ. Press, Princeton, NJ, 1996 | MR | Zbl
[15] Palvelev R. V., “Rasseyanie vikhrei v abelevoi modeli Khiggsa”, TMF, 156:1 (2008), 77–91 | DOI | MR | Zbl
[16] Palvelev R. V., “Obosnovanie adiabaticheskogo printsipa v abelevoi modeli Khiggsa”, Tr. Mosk. mat. o-va, 72, no. 2, 2011, 281–314 | Zbl
[17] Palvelev R. V., Sergeev A. G., “Obosnovanie adiabaticheskogo printsipa dlya giperbolicheskikh uravnenii Ginzburga–Landau”, Tr. MIAN, 277, 2012, 199–214 | MR | Zbl
[18] Salamon D., Spin geometry and Seiberg–Witten invariants, Preprint, Warwick Univ., 1996 | MR
[19] Seiberg N., Witten E., “Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nucl. Phys. B, 426 (1994), 19–52 | DOI | MR | Zbl
[20] Seiberg N., Witten E., “Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD”, Nucl. Phys. B, 431 (1994), 484–550 | DOI | MR | Zbl
[21] Sergeev A. G., Vortices and Seiberg–Witten equations, Nagoya Univ., Nagoya, 2002
[22] Sergeev A. G., Chechin S. V., “Rasseyanie medlenno dvizhuschikhsya vikhrei v abelevoi $(2+1)$-mernoi modeli Khiggsa”, TMF, 85:3 (1990), 397–411 | MR
[23] Stuart D. M. A., “Periodic solutions of the Abelian Higgs model and rigid rotation of vortices”, Geom. Funct. Anal., 9 (1999), 568–595 | DOI | MR | Zbl
[24] Taubes C. H., “Arbitrary $N$-vortex solutions to the first order Ginzburg–Landau equations”, Commun. Math. Phys., 72 (1980), 277–292 | DOI | MR | Zbl
[25] Taubes C. H., “On the equivalence of the first and second order equations for gauge theories”, Commun. Math. Phys., 75 (1980), 207–227 | DOI | MR | Zbl
[26] Taubes C. H., “The Seiberg–Witten invariants and symplectic forms”, Math. Res. Lett., 1 (1994), 809–822 | DOI | MR | Zbl
[27] Taubes C. H., “The Seiberg–Witten and Gromov invariants”, Math. Res. Lett., 2 (1995), 221–238 | DOI | MR | Zbl
[28] Taubes C. H., “$\mathrm{Gr\Rightarrow SW}$: From the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Amer. Math. Soc., 9 (1996), 845–918 | DOI | MR | Zbl
[29] Taubes C. H., “Counting pseudo-holomorphic submanifolds in dimension 4”, J. Diff. Geom., 44 (1996), 818–893 | MR | Zbl
[30] Taubes C. H., “$\mathrm{Gr\Rightarrow SW}$: From pseudo-holomorphic curves to Seiberg–Witten solutions”, J. Diff. Geom., 51 (1999), 203–334 | MR | Zbl
[31] Taubes C. H., “$\mathrm{Gr=SW}$: Counting curves and connections”, J. Diff. Geom., 52 (1999), 453–609 | MR | Zbl
[32] Witten E., “Monopoles and four-manifolds”, Math. Res. Lett., 1 (1994), 769–796 | DOI | MR | Zbl