Adiabatic limit in the Ginzburg--Landau and Seiberg--Witten equations
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 242-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hyperbolic Ginzburg–Landau equations arise in gauge field theory as the Euler–Lagrange equations for the $(2+1)$-dimensional Abelian Higgs model. The moduli space of their static solutions, called vortices, was described by Taubes; however, little is known about the moduli space of dynamic solutions. Manton proposed to study dynamic solutions with small kinetic energy with the help of the adiabatic limit by introducing the “slow time” on solution trajectories. In this limit the dynamic solutions converge to geodesics in the space of vortices with respect to the metric generated by the kinetic energy functional. So, the original equations reduce to Euler geodesic equations, and by solving them one can describe the behavior of slowly moving dynamic solutions. It turns out that this procedure has a 4-dimensional analog. Namely, for the Seiberg–Witten equations on 4-dimensional symplectic manifolds it is possible to introduce an analog of the adiabatic limit. In this limit, solutions of the Seiberg–Witten equations reduce to families of vortices in normal planes to pseudoholomorphic curves, which can be considered as complex analogs of geodesics parameterized by “complex time.” The study of the adiabatic limit for the equations indicated in the title is the main content of this paper.
@article{TRSPY_2015_289_a14,
     author = {A. G. Sergeev},
     title = {Adiabatic limit in the {Ginzburg--Landau} and {Seiberg--Witten} equations},
     journal = {Informatics and Automation},
     pages = {242--303},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a14/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Adiabatic limit in the Ginzburg--Landau and Seiberg--Witten equations
JO  - Informatics and Automation
PY  - 2015
SP  - 242
EP  - 303
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a14/
LA  - ru
ID  - TRSPY_2015_289_a14
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Adiabatic limit in the Ginzburg--Landau and Seiberg--Witten equations
%J Informatics and Automation
%D 2015
%P 242-303
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a14/
%G ru
%F TRSPY_2015_289_a14
A. G. Sergeev. Adiabatic limit in the Ginzburg--Landau and Seiberg--Witten equations. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 242-303. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a14/

[1] Atiyah M. F., Hitchin N., The geometry and dynamics of magnetic monopoles, Princeton Univ. Press, Princeton, NJ, 1988 | MR | Zbl

[2] Bradlow S. B., “Vortices in holomorphic line bundles over closed Kähler manifolds”, Commun. Math. Phys., 135 (1990), 1–17 | DOI | MR | Zbl

[3] Domrin A. V., “Analogi vikhrei Ginzburga–Landau”, TMF, 124:1 (2000), 18–35 | DOI | MR | Zbl

[4] Donaldson S. K., “An application of gauge theory to four dimensional topology”, J. Diff. Geom., 18 (1983), 279–315 | MR | Zbl

[5] García-Prada O., “A direct existence proof for the vortex equations over a compact Riemann surface”, Bull. London Math. Soc., 26 (1994), 88–96 | DOI | MR | Zbl

[6] Gromov M., “Pseudo holomorphic curves in symplectic manifolds”, Invent. math., 82 (1985), 307–347 | DOI | MR | Zbl

[7] Jaffe A., Taubes C., Vortices and monopoles: Structure of static gauge theories, Birkhäuser, Boston, 1980 | MR | Zbl

[8] Kazdan J. L., Warner F. W., “Curvature functions for compact 2-manifolds”, Ann. Math. Ser. 2, 99 (1974), 14–47 | DOI | MR | Zbl

[9] Kotschick D., “The Seiberg–Witten invariants of symplectic four-manifolds (after C. H. Taubes)”, Séminaire Burbaki, Volume 1995/96. Exposés 805–819, Astérisque, 241, Soc. math. France, Paris, 1997, Exp. 812, 195–220 | MR | Zbl

[10] Kronheimer P. B., Mrowka T. S., “The genus of embedded surfaces in the projective plane”, Math. Res. Lett., 1 (1994), 797–808 | DOI | MR | Zbl

[11] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, Ch. 2, v. 5, Statisticheskaya fizika, Fizmatlit, M., 2002

[12] Lawson H. B. (Jr.), Michelsohn M.-L., Spin geometry, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl

[13] Manton N. S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR | Zbl

[14] Morgan J. W., The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Princeton Univ. Press, Princeton, NJ, 1996 | MR | Zbl

[15] Palvelev R. V., “Rasseyanie vikhrei v abelevoi modeli Khiggsa”, TMF, 156:1 (2008), 77–91 | DOI | MR | Zbl

[16] Palvelev R. V., “Obosnovanie adiabaticheskogo printsipa v abelevoi modeli Khiggsa”, Tr. Mosk. mat. o-va, 72, no. 2, 2011, 281–314 | Zbl

[17] Palvelev R. V., Sergeev A. G., “Obosnovanie adiabaticheskogo printsipa dlya giperbolicheskikh uravnenii Ginzburga–Landau”, Tr. MIAN, 277, 2012, 199–214 | MR | Zbl

[18] Salamon D., Spin geometry and Seiberg–Witten invariants, Preprint, Warwick Univ., 1996 | MR

[19] Seiberg N., Witten E., “Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nucl. Phys. B, 426 (1994), 19–52 | DOI | MR | Zbl

[20] Seiberg N., Witten E., “Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD”, Nucl. Phys. B, 431 (1994), 484–550 | DOI | MR | Zbl

[21] Sergeev A. G., Vortices and Seiberg–Witten equations, Nagoya Univ., Nagoya, 2002

[22] Sergeev A. G., Chechin S. V., “Rasseyanie medlenno dvizhuschikhsya vikhrei v abelevoi $(2+1)$-mernoi modeli Khiggsa”, TMF, 85:3 (1990), 397–411 | MR

[23] Stuart D. M. A., “Periodic solutions of the Abelian Higgs model and rigid rotation of vortices”, Geom. Funct. Anal., 9 (1999), 568–595 | DOI | MR | Zbl

[24] Taubes C. H., “Arbitrary $N$-vortex solutions to the first order Ginzburg–Landau equations”, Commun. Math. Phys., 72 (1980), 277–292 | DOI | MR | Zbl

[25] Taubes C. H., “On the equivalence of the first and second order equations for gauge theories”, Commun. Math. Phys., 75 (1980), 207–227 | DOI | MR | Zbl

[26] Taubes C. H., “The Seiberg–Witten invariants and symplectic forms”, Math. Res. Lett., 1 (1994), 809–822 | DOI | MR | Zbl

[27] Taubes C. H., “The Seiberg–Witten and Gromov invariants”, Math. Res. Lett., 2 (1995), 221–238 | DOI | MR | Zbl

[28] Taubes C. H., “$\mathrm{Gr\Rightarrow SW}$: From the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Amer. Math. Soc., 9 (1996), 845–918 | DOI | MR | Zbl

[29] Taubes C. H., “Counting pseudo-holomorphic submanifolds in dimension 4”, J. Diff. Geom., 44 (1996), 818–893 | MR | Zbl

[30] Taubes C. H., “$\mathrm{Gr\Rightarrow SW}$: From pseudo-holomorphic curves to Seiberg–Witten solutions”, J. Diff. Geom., 51 (1999), 203–334 | MR | Zbl

[31] Taubes C. H., “$\mathrm{Gr=SW}$: Counting curves and connections”, J. Diff. Geom., 52 (1999), 453–609 | MR | Zbl

[32] Witten E., “Monopoles and four-manifolds”, Math. Res. Lett., 1 (1994), 769–796 | DOI | MR | Zbl