Existence of traps in the problem of maximizing quantum observable averages for a qubit at short times
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 227-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Mayer maximization problem for an objective functional that describes the average value at some fixed time of a quantum-mechanical observable for a two-level quantum system (qubit). In the previous studies we proved that for sufficiently large times the objective functional has no local maxima that are not global maxima. Such local maxima that are not global are called traps. In this paper we prove that for sufficiently short times under certain conditions traps for this problem do exist.
@article{TRSPY_2015_289_a12,
     author = {A. N. Pechen and N. B. Il'in},
     title = {Existence of traps in the problem of maximizing quantum observable averages for a qubit at short times},
     journal = {Informatics and Automation},
     pages = {227--234},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a12/}
}
TY  - JOUR
AU  - A. N. Pechen
AU  - N. B. Il'in
TI  - Existence of traps in the problem of maximizing quantum observable averages for a qubit at short times
JO  - Informatics and Automation
PY  - 2015
SP  - 227
EP  - 234
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a12/
LA  - ru
ID  - TRSPY_2015_289_a12
ER  - 
%0 Journal Article
%A A. N. Pechen
%A N. B. Il'in
%T Existence of traps in the problem of maximizing quantum observable averages for a qubit at short times
%J Informatics and Automation
%D 2015
%P 227-234
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a12/
%G ru
%F TRSPY_2015_289_a12
A. N. Pechen; N. B. Il'in. Existence of traps in the problem of maximizing quantum observable averages for a qubit at short times. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 227-234. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a12/

[1] Rabitz H. A., Hsieh M. M., Rosenthal C. M., “Quantum optimally controlled transition landscapes”, Science, 303:5666 (2004), 1998–2001 | DOI

[2] Ho T.-S., Rabitz H., “Why do effective quantum controls appear easy to find?”, J. Photochem. Photobiol. A, 180 (2006), 226–240 | DOI

[3] Hsieh M., Wu R., Rabitz H., Lidar D., “Optimal control landscape for the generation of unitary transformations with constrained dynamics”, Phys. Rev. A, 81:6 (2010), 062352 | DOI

[4] Pechen A. N., Tannor D. J., “Are there traps in quantum control landscapes?”, Phys. Rev. Lett., 106:12 (2011), 120402 | DOI

[5] Moore K. W., Rabitz H., “Exploring quantum control landscapes: Topology, features, and optimization scaling”, Phys. Rev. A, 84:1 (2011), 012109 | DOI

[6] Pechen A., Il'in N., “Trap-free manipulation in the Landau–Zener system”, Phys. Rev. A, 86:5 (2012), 052117 | DOI

[7] de Fouquieres P., Schirmer S. G., “A closer look at quantum control landscapes and their implication for control optimization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350021 | DOI | MR | Zbl

[8] Pechen A. N., Ilin N. B., “Kogerentnoe upravlenie kubitom svobodno ot lovushek”, Tr. MIAN, 285, 2014, 244–252 | DOI | Zbl

[9] Kostrikin A. I., Vvedenie v algebru. Ch. 2: Lineinaya algebra, Fizmatlit, M., 2000 | Zbl