Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_288_a9, author = {G. Yu. Panina}, title = {Cyclopermutohedron}, journal = {Informatics and Automation}, pages = {149--162}, publisher = {mathdoc}, volume = {288}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a9/} }
G. Yu. Panina. Cyclopermutohedron. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 149-162. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a9/
[1] Chapoton F., Fomin S., Zelevinsky A., “Polytopal realizations of generalized associahedra”, Can. Math. Bull., 45 (2002), 537–566 | DOI | MR | Zbl
[2] Gelfand I.M., Kapranov M.M., Zelevinsky A.V., Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl
[3] Farber M., Schütz D., “Homology of planar polygon spaces”, Geom. dedicata, 125 (2007), 75–92 | DOI | MR | Zbl
[4] Kapranov M., “The permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the KZ equation”, J. Pure Appl. Algebra, 85:2 (1993), 119–142 | DOI | MR | Zbl
[5] Pukhlikov A.V., Khovanskii A.G., “Konechno-additivnye mery virtualnykh mnogogrannikov”, Algebra i analiz, 4:2 (1992), 161–185 | MR
[6] Panina G.Yu., “Virtualnye mnogogranniki i klassicheskie voprosy geometrii”, Algebra i analiz, 14:5 (2002), 152–170 | MR
[7] Panina G., “New counterexamples to A.D. Alexandrov's hypothesis”, Adv. Geom., 5:2 (2005), 301–317 | DOI | MR | Zbl
[8] Panina G., Moduli space of a planar polygonal linkage: A combinatorial description, E-print, 2012, arXiv: 1209.3241 [math.AT]
[9] Postnikov A., “Permutohedra, associahedra, and beyond”, Int. Math. Res. Not., 2009:6 (2009), 1026–1106 | MR | Zbl
[10] Ziegler G.M., Lectures on polytopes, Grad. Texts Math., 152, Springer, Berlin, 1995 | DOI | MR | Zbl