Cyclopermutohedron
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 149-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the $k$-faces of the permutohedron $\Pi_n$ can be labeled by (all possible) linearly ordered partitions of the set $[n]=\{1,\dots,n\}$ into $n-k$ nonempty parts. The incidence relation corresponds to the refinement: a face $F$ contains a face $F'$ whenever the label of $F'$ refines the label of $F$. We consider the cell complex $\mathrm{CP}_{n+1}$ defined in a similar way but with the linear ordering replaced by the cyclic ordering. Namely, the $k$-cells of the complex $\mathrm{CP}_{n+1}$ are labeled by (all possible) cyclically ordered partitions of the set $[n+1]=\{1,\dots,n+1\}$ into $n+1-k>2$ nonempty parts. The incidence relation in $\mathrm{CP}_{n+1}$ again corresponds to the refinement: a cell $F$ contains a cell $F'$ whenever the label of $F'$ refines the label of $F$. The complex $\mathrm{CP}_{n+1}$ cannot be represented by a convex polytope, since it is not a combinatorial sphere (not even a combinatorial manifold). However, it can be represented by some virtual polytope (that is, the Minkowski difference of two convex polytopes), which we call a cyclopermutohedron $\mathcal{CP}_{n+1}$. It is defined explicitly as a weighted Minkowski sum of line segments. Informally, the cyclopermutohedron can be viewed as a “permutohedron with diagonals.” One of the motivations for introducing such an object is that the cyclopermutohedron is a “universal” polytope for moduli spaces of polygonal linkages.
@article{TRSPY_2015_288_a9,
     author = {G. Yu. Panina},
     title = {Cyclopermutohedron},
     journal = {Informatics and Automation},
     pages = {149--162},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a9/}
}
TY  - JOUR
AU  - G. Yu. Panina
TI  - Cyclopermutohedron
JO  - Informatics and Automation
PY  - 2015
SP  - 149
EP  - 162
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a9/
LA  - ru
ID  - TRSPY_2015_288_a9
ER  - 
%0 Journal Article
%A G. Yu. Panina
%T Cyclopermutohedron
%J Informatics and Automation
%D 2015
%P 149-162
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a9/
%G ru
%F TRSPY_2015_288_a9
G. Yu. Panina. Cyclopermutohedron. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 149-162. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a9/

[1] Chapoton F., Fomin S., Zelevinsky A., “Polytopal realizations of generalized associahedra”, Can. Math. Bull., 45 (2002), 537–566 | DOI | MR | Zbl

[2] Gelfand I.M., Kapranov M.M., Zelevinsky A.V., Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl

[3] Farber M., Schütz D., “Homology of planar polygon spaces”, Geom. dedicata, 125 (2007), 75–92 | DOI | MR | Zbl

[4] Kapranov M., “The permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the KZ equation”, J. Pure Appl. Algebra, 85:2 (1993), 119–142 | DOI | MR | Zbl

[5] Pukhlikov A.V., Khovanskii A.G., “Konechno-additivnye mery virtualnykh mnogogrannikov”, Algebra i analiz, 4:2 (1992), 161–185 | MR

[6] Panina G.Yu., “Virtualnye mnogogranniki i klassicheskie voprosy geometrii”, Algebra i analiz, 14:5 (2002), 152–170 | MR

[7] Panina G., “New counterexamples to A.D. Alexandrov's hypothesis”, Adv. Geom., 5:2 (2005), 301–317 | DOI | MR | Zbl

[8] Panina G., Moduli space of a planar polygonal linkage: A combinatorial description, E-print, 2012, arXiv: 1209.3241 [math.AT]

[9] Postnikov A., “Permutohedra, associahedra, and beyond”, Int. Math. Res. Not., 2009:6 (2009), 1026–1106 | MR | Zbl

[10] Ziegler G.M., Lectures on polytopes, Grad. Texts Math., 152, Springer, Berlin, 1995 | DOI | MR | Zbl