Extremal problems of circle packings on a~sphere and irreducible contact graphs
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 133-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, we have enumerated (up to isometry) all locally rigid packings of congruent circles (spherical caps) on the unit sphere with the number of circles $N12$. This problem is equivalent to the enumeration of irreducible spherical contact graphs. In this paper, we show that using the list of irreducible contact graphs, one can solve various problems on extremal packings such as the Tammes problem for the sphere and projective plane, the problem of the maximum kissing number in spherical packings, Danzer's problems, and other problems on irreducible contact graphs.
@article{TRSPY_2015_288_a8,
     author = {O. R. Musin and A. S. Tarasov},
     title = {Extremal problems of circle packings on a~sphere and irreducible contact graphs},
     journal = {Informatics and Automation},
     pages = {133--148},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a8/}
}
TY  - JOUR
AU  - O. R. Musin
AU  - A. S. Tarasov
TI  - Extremal problems of circle packings on a~sphere and irreducible contact graphs
JO  - Informatics and Automation
PY  - 2015
SP  - 133
EP  - 148
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a8/
LA  - ru
ID  - TRSPY_2015_288_a8
ER  - 
%0 Journal Article
%A O. R. Musin
%A A. S. Tarasov
%T Extremal problems of circle packings on a~sphere and irreducible contact graphs
%J Informatics and Automation
%D 2015
%P 133-148
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a8/
%G ru
%F TRSPY_2015_288_a8
O. R. Musin; A. S. Tarasov. Extremal problems of circle packings on a~sphere and irreducible contact graphs. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 133-148. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a8/

[1] Aigner M., Ziegler G.M., Proofs from THE BOOK, 1st ed., Springer, Berlin, 1998 ; 2nd ed., 2002 | Zbl

[2] Anstreicher K.M., “The thirteen spheres: A new proof”, Discrete Comput. Geom., 31 (2004), 613–625 | DOI | MR | Zbl

[3] Arkus N., Manoharan V.N., Brenner M.P., “Deriving finite sphere packings”, SIAM J. Discrete Math., 25 (2011), 1860–1901 | DOI | MR | Zbl

[4] Böröczky K., “The problem of Tammes for $n = 11$”, Stud. sci. math. Hung., 18 (1983), 165–171 | MR | Zbl

[5] Böröczky K., “The Newton–Gregory problem revisited”, Discrete geometry, eds. A. Bezdek, M. Dekker, New York, 2003, 103–110 | DOI | MR | Zbl

[6] Böröczky K., Szabó L., “Arrangements of 13 points on a sphere”, Discrete geometry, eds. A. Bezdek, M. Dekker, New York, 2003, 111–184 | MR | Zbl

[7] Böröczky K., Szabó L., “Arrangements of 14, 15, 16 and 17 points on a sphere”, Stud. sci. math. Hung., 40 (2003), 407–421 | MR | Zbl

[8] Boyvalenkov P., Dodunekov S., Musin O., “A survey on the kissing numbers”, Serdica Math. J., 38 (2012), 507–522 | MR

[9] Brass P., Moser W.O.J., Pach J., Research problems in discrete geometry, Springer, New York, 2005 | MR | Zbl

[10] Brinkmann G., McKay B.D., Fast generation of planar graphs (expanded edition), E-print, 2008 | MR

[11] Brinkmann G., McKay B., plantri and fullgen, 2011 http://cs.anu.edu.au/~bdm/plantri/

[12] Cohn H., Woo J., “Three-point bounds for energy minimization”, J. Amer. Math. Soc., 25 (2012), 929–958 | DOI | MR | Zbl

[13] Danzer L., “Finite point-sets on $S^2$ with minimum distance as large as possible”, Discrete Math., 60 (1986), 3–66 | DOI | MR | Zbl

[14] Donev A., Torquato S., Stillinger F.H., Connelly R., “Jamming in hard sphere and disk packings”, J. Appl. Phys., 95 (2004), 989–999 | DOI

[15] Fejes L., “Über eine Abschätzung des kürzesten Abstandes zweier Punkte eines auf einer Kugelfläche liegenden Punktsystems”, Jahresber. Dtsch. Math.-Ver., 53 (1943), 66–68 | MR | Zbl

[16] Feiesh Tot L., Raspolozheniya na ploskosti, na sfere i v prostranstve, Fizmatgiz, M., 1958

[17] Fejes Tóth L., “Distribution of points in the elliptic plane”, Acta math. Acad. sci. Hung., 16 (1965), 437–440 | DOI | MR | Zbl

[18] Flatley L., Tarasov A., Taylor M., Theil F., “Packing twelve spherical caps to maximize tangencies”, J. Comput. Appl. Math., 254 (2013), 220–225 | DOI | MR | Zbl

[19] Habicht W., van der Waerden B.L., “Lagerung von Punkten auf der Kugel”, Math. Ann., 123 (1951), 223–234 | DOI | MR | Zbl

[20] Hopkins A.B., Stillinger F.H., Torquato S., “Densest local sphere-packing diversity: General concepts and application to two dimensions”, Phys. Rev. E., 81 (2010), 041305 | DOI | MR

[21] Hsiang W.-Y., Least action principle of crystal formation of dense packing type and Kepler's conjecture, World Sci., Singapore, 2001 | MR | Zbl

[22] Leech J., “The problem of the thirteen spheres”, Math. Gaz., 40 (1956), 22–23 | DOI | MR | Zbl

[23] Maehara H., “Isoperimetric theorem for spherical polygons and the problem of 13 spheres”, Ryukyu Math. J., 14 (2001), 41–57 | MR | Zbl

[24] Maehara H., “The problem of thirteen spheres—a proof for undergraduates”, Eur. J. Comb., 28 (2007), 1770–1778 | DOI | MR | Zbl

[25] Musin O.R., “Problema dvadtsati pyati sfer”, UMN, 58:4 (2003), 153–154 | DOI | MR | Zbl

[26] Musin O.R., “The kissing problem in three dimensions”, Discrete Comput. Geom., 35 (2006), 375–384 | DOI | MR | Zbl

[27] Musin O.R., “The one-sided kissing number in four dimensions”, Period. math. Hung., 53 (2006), 209–225 | DOI | MR | Zbl

[28] Musin O.R., “The kissing number in four dimensions”, Ann. Math. Ser. 2, 168 (2008), 1–32 | DOI | MR | Zbl

[29] Musin O.R., Nikitenko A.V., Optimal packings of congruent circles on a square flat torus, E-print, 2012, arXiv: 1212.0649 [math.MG]

[30] Musin O.R., Tarasov A.S., “The strong thirteen spheres problem”, Discrete Comput. Geom., 48 (2012), 128–141 | DOI | MR | Zbl

[31] Musin O.R., Tarasov A.S., “Perechislenie neprivodimykh kontaktnykh grafov na sfere”, Fund. i prikl. matematika, 18:2 (2013), 125–145 | MR

[32] Musin O.R., Tarasov A.S., The Tammes problem for $N=14$, E-print, 2014, arXiv: 1410.2536 [math.MG]

[33] Robinson R.M., “Arrangement of 24 points on a sphere”, Math. Ann., 144 (1961), 17–48 | DOI | MR | Zbl

[34] Schütte K., van der Waerden B.L., “Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz”, Math. Ann., 123 (1951), 96–124 | DOI | MR | Zbl

[35] Schütte K., van der Waerden B.L., “Das Problem der dreizehn Kugeln”, Math. Ann., 125 (1953), 325–334 | DOI | MR | Zbl

[36] Tammes P.M.L., “On the origin of number and arrangement of the places of exit on the surface of pollen-grains”, Recuil trav. bot. Néerl., 27 (1930), 1–84

[37] van der Waerden B.L., “Punkte auf der Kugel. Drei Zusätze”, Math. Ann., 125 (1952), 213–222 | DOI | MR | Zbl