Extremal problems of circle packings on a~sphere and irreducible contact graphs
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 133-148

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, we have enumerated (up to isometry) all locally rigid packings of congruent circles (spherical caps) on the unit sphere with the number of circles $N12$. This problem is equivalent to the enumeration of irreducible spherical contact graphs. In this paper, we show that using the list of irreducible contact graphs, one can solve various problems on extremal packings such as the Tammes problem for the sphere and projective plane, the problem of the maximum kissing number in spherical packings, Danzer's problems, and other problems on irreducible contact graphs.
@article{TRSPY_2015_288_a8,
     author = {O. R. Musin and A. S. Tarasov},
     title = {Extremal problems of circle packings on a~sphere and irreducible contact graphs},
     journal = {Informatics and Automation},
     pages = {133--148},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a8/}
}
TY  - JOUR
AU  - O. R. Musin
AU  - A. S. Tarasov
TI  - Extremal problems of circle packings on a~sphere and irreducible contact graphs
JO  - Informatics and Automation
PY  - 2015
SP  - 133
EP  - 148
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a8/
LA  - ru
ID  - TRSPY_2015_288_a8
ER  - 
%0 Journal Article
%A O. R. Musin
%A A. S. Tarasov
%T Extremal problems of circle packings on a~sphere and irreducible contact graphs
%J Informatics and Automation
%D 2015
%P 133-148
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a8/
%G ru
%F TRSPY_2015_288_a8
O. R. Musin; A. S. Tarasov. Extremal problems of circle packings on a~sphere and irreducible contact graphs. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 133-148. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a8/