Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_288_a8, author = {O. R. Musin and A. S. Tarasov}, title = {Extremal problems of circle packings on a~sphere and irreducible contact graphs}, journal = {Informatics and Automation}, pages = {133--148}, publisher = {mathdoc}, volume = {288}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a8/} }
TY - JOUR AU - O. R. Musin AU - A. S. Tarasov TI - Extremal problems of circle packings on a~sphere and irreducible contact graphs JO - Informatics and Automation PY - 2015 SP - 133 EP - 148 VL - 288 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a8/ LA - ru ID - TRSPY_2015_288_a8 ER -
O. R. Musin; A. S. Tarasov. Extremal problems of circle packings on a~sphere and irreducible contact graphs. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 133-148. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a8/
[1] Aigner M., Ziegler G.M., Proofs from THE BOOK, 1st ed., Springer, Berlin, 1998 ; 2nd ed., 2002 | Zbl
[2] Anstreicher K.M., “The thirteen spheres: A new proof”, Discrete Comput. Geom., 31 (2004), 613–625 | DOI | MR | Zbl
[3] Arkus N., Manoharan V.N., Brenner M.P., “Deriving finite sphere packings”, SIAM J. Discrete Math., 25 (2011), 1860–1901 | DOI | MR | Zbl
[4] Böröczky K., “The problem of Tammes for $n = 11$”, Stud. sci. math. Hung., 18 (1983), 165–171 | MR | Zbl
[5] Böröczky K., “The Newton–Gregory problem revisited”, Discrete geometry, eds. A. Bezdek, M. Dekker, New York, 2003, 103–110 | DOI | MR | Zbl
[6] Böröczky K., Szabó L., “Arrangements of 13 points on a sphere”, Discrete geometry, eds. A. Bezdek, M. Dekker, New York, 2003, 111–184 | MR | Zbl
[7] Böröczky K., Szabó L., “Arrangements of 14, 15, 16 and 17 points on a sphere”, Stud. sci. math. Hung., 40 (2003), 407–421 | MR | Zbl
[8] Boyvalenkov P., Dodunekov S., Musin O., “A survey on the kissing numbers”, Serdica Math. J., 38 (2012), 507–522 | MR
[9] Brass P., Moser W.O.J., Pach J., Research problems in discrete geometry, Springer, New York, 2005 | MR | Zbl
[10] Brinkmann G., McKay B.D., Fast generation of planar graphs (expanded edition), E-print, 2008 | MR
[11] Brinkmann G., McKay B., plantri and fullgen, 2011 http://cs.anu.edu.au/~bdm/plantri/
[12] Cohn H., Woo J., “Three-point bounds for energy minimization”, J. Amer. Math. Soc., 25 (2012), 929–958 | DOI | MR | Zbl
[13] Danzer L., “Finite point-sets on $S^2$ with minimum distance as large as possible”, Discrete Math., 60 (1986), 3–66 | DOI | MR | Zbl
[14] Donev A., Torquato S., Stillinger F.H., Connelly R., “Jamming in hard sphere and disk packings”, J. Appl. Phys., 95 (2004), 989–999 | DOI
[15] Fejes L., “Über eine Abschätzung des kürzesten Abstandes zweier Punkte eines auf einer Kugelfläche liegenden Punktsystems”, Jahresber. Dtsch. Math.-Ver., 53 (1943), 66–68 | MR | Zbl
[16] Feiesh Tot L., Raspolozheniya na ploskosti, na sfere i v prostranstve, Fizmatgiz, M., 1958
[17] Fejes Tóth L., “Distribution of points in the elliptic plane”, Acta math. Acad. sci. Hung., 16 (1965), 437–440 | DOI | MR | Zbl
[18] Flatley L., Tarasov A., Taylor M., Theil F., “Packing twelve spherical caps to maximize tangencies”, J. Comput. Appl. Math., 254 (2013), 220–225 | DOI | MR | Zbl
[19] Habicht W., van der Waerden B.L., “Lagerung von Punkten auf der Kugel”, Math. Ann., 123 (1951), 223–234 | DOI | MR | Zbl
[20] Hopkins A.B., Stillinger F.H., Torquato S., “Densest local sphere-packing diversity: General concepts and application to two dimensions”, Phys. Rev. E., 81 (2010), 041305 | DOI | MR
[21] Hsiang W.-Y., Least action principle of crystal formation of dense packing type and Kepler's conjecture, World Sci., Singapore, 2001 | MR | Zbl
[22] Leech J., “The problem of the thirteen spheres”, Math. Gaz., 40 (1956), 22–23 | DOI | MR | Zbl
[23] Maehara H., “Isoperimetric theorem for spherical polygons and the problem of 13 spheres”, Ryukyu Math. J., 14 (2001), 41–57 | MR | Zbl
[24] Maehara H., “The problem of thirteen spheres—a proof for undergraduates”, Eur. J. Comb., 28 (2007), 1770–1778 | DOI | MR | Zbl
[25] Musin O.R., “Problema dvadtsati pyati sfer”, UMN, 58:4 (2003), 153–154 | DOI | MR | Zbl
[26] Musin O.R., “The kissing problem in three dimensions”, Discrete Comput. Geom., 35 (2006), 375–384 | DOI | MR | Zbl
[27] Musin O.R., “The one-sided kissing number in four dimensions”, Period. math. Hung., 53 (2006), 209–225 | DOI | MR | Zbl
[28] Musin O.R., “The kissing number in four dimensions”, Ann. Math. Ser. 2, 168 (2008), 1–32 | DOI | MR | Zbl
[29] Musin O.R., Nikitenko A.V., Optimal packings of congruent circles on a square flat torus, E-print, 2012, arXiv: 1212.0649 [math.MG]
[30] Musin O.R., Tarasov A.S., “The strong thirteen spheres problem”, Discrete Comput. Geom., 48 (2012), 128–141 | DOI | MR | Zbl
[31] Musin O.R., Tarasov A.S., “Perechislenie neprivodimykh kontaktnykh grafov na sfere”, Fund. i prikl. matematika, 18:2 (2013), 125–145 | MR
[32] Musin O.R., Tarasov A.S., The Tammes problem for $N=14$, E-print, 2014, arXiv: 1410.2536 [math.MG]
[33] Robinson R.M., “Arrangement of 24 points on a sphere”, Math. Ann., 144 (1961), 17–48 | DOI | MR | Zbl
[34] Schütte K., van der Waerden B.L., “Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz”, Math. Ann., 123 (1951), 96–124 | DOI | MR | Zbl
[35] Schütte K., van der Waerden B.L., “Das Problem der dreizehn Kugeln”, Math. Ann., 125 (1953), 325–334 | DOI | MR | Zbl
[36] Tammes P.M.L., “On the origin of number and arrangement of the places of exit on the surface of pollen-grains”, Recuil trav. bot. Néerl., 27 (1930), 1–84
[37] van der Waerden B.L., “Punkte auf der Kugel. Drei Zusätze”, Math. Ann., 125 (1952), 213–222 | DOI | MR | Zbl