Local approach and the theory of lovozerite structures
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 120-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

The local theorem and local approach to regular point systems and tilings are considered as applied to lovozerite structures, which form isohedral tilings of the space $E^n$ into cubes with two $v$-octants situated along a solid diagonal of a cube. All lovozerite tilings that satisfy the following three basic conditions are derived: (1) the tilings are isohedral; (2) the cubes can be joined to share either entire faces or rectangular half-faces; (3) the $v$-octants of neighboring cubes share vertices but never share edges or faces. Local conditions of the regularity of tilings in terms of the first coronas and subcoronas are considered. With the use of the information entropy of structures corresponding to lovozerite tilings, it is shown that in nature one encounters, as a rule, the simplest structures (four of the ten possible tilings are realized in the crystal structures of minerals and inorganic compounds).
@article{TRSPY_2015_288_a7,
     author = {S. V. Krivovichev},
     title = {Local approach and the theory of lovozerite structures},
     journal = {Informatics and Automation},
     pages = {120--132},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a7/}
}
TY  - JOUR
AU  - S. V. Krivovichev
TI  - Local approach and the theory of lovozerite structures
JO  - Informatics and Automation
PY  - 2015
SP  - 120
EP  - 132
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a7/
LA  - ru
ID  - TRSPY_2015_288_a7
ER  - 
%0 Journal Article
%A S. V. Krivovichev
%T Local approach and the theory of lovozerite structures
%J Informatics and Automation
%D 2015
%P 120-132
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a7/
%G ru
%F TRSPY_2015_288_a7
S. V. Krivovichev. Local approach and the theory of lovozerite structures. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 120-132. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a7/

[1] Cöelfen H., Antonietti M., Mesocrystals and nonclassical crystallization, Wiley, Chichester, 2008

[2] Adleman L.M., “Molecular computation of solutions to combinatorial problems”, Science., 266 (1994), 1021–1024 | DOI

[3] Rothemund P.W.K., Papadakis N., Winfree E., “Algorithmic self-assembly of DNA Sierpinski triangles”, PLoS Biol., 2:12 (2004), Pap. e424 | DOI

[4] Winfree E., Algorithmic self-assembly of DNA, PhD Thesis, Calif. Inst. Technol., Pasadena, CA, 1998

[5] Patitz M.J., “An introduction to tile-based self-assembly”, Unconventional computation and natural computation, Proc. 11th Int. Conf., Orléans, 2012, Lect. Notes Comput. Sci., 7445, Springer, Berlin, 2012, 34–62 | DOI | MR | Zbl

[6] Patitz M.J., “An introduction to tile-based self-assembly and a survey of recent results”, Nat. Comput., 13 (2014), 195–224 | DOI | MR

[7] Ilachinski A., Cellular automata: A discrete universe, World Scientific, Singapore, 2001 | MR | Zbl

[8] Wolfram S., A new kind of science, Wolfram Media, Champaign, IL, 2002 | MR | Zbl

[9] Hendricks J., Patitz M.J., “On the equivalence of cellular automata and the Tile Assembly Model”, Machines, Computations and Universality 2013, Proc. Conf., Zürich, Sept. 9–11, 2013, Electron. Proc. Theor. Comput. Sci., 128, 167–189 | DOI

[10] International tables for crystallography, 25th ed., eds. Th. Hahn, Kluwer, Dordrecht, 2002

[11] Engel P., Geometric crystallography: An axiomatic introduction to crystallography, Kluwer, Dordrecht, 1986 | Zbl

[12] Delone B., Padurov N., Aleksandrov A., Matematicheskie osnovy strukturnogo analiza kristallov i opredelenie osnovnogo parallelepipeda povtoryaemosti pri pomoschi rentgenovskikh luchei, ONTI–GTTI, L.; M., 1934

[13] Dolbilin N.P., “O lokalnykh svoistvakh diskretnykh pravilnykh sistem”, DAN SSSR, 230:3 (1976), 516–519 | MR | Zbl

[14] Delone B.N., Dolbilin N.P., Shtogrin M.I., Galiulin R.V., “Lokalnyi kriterii pravilnosti sistemy tochek”, DAN SSSR, 227:1 (1976), 19–21 | MR | Zbl

[15] Dolbilin N.P., Lagarias J.C., Senechal M., “Multiregular point systems”, Discrete Comput. Geom., 20 (1998), 477–498 | DOI | MR | Zbl

[16] Krivovichev S., “Topological complexity of crystal structures: quantitative approach”, Acta crystallogr. A, 68 (2012), 393–398 | DOI

[17] Krivovichev S.V., “Structural complexity of minerals: Information storage and processing in the mineral world”, Mineral. Mag., 77 (2013), 275–326 | DOI

[18] Krivovichev S.V., “Which inorganic structures are the most complex?”, Angew. Chem. Int. Ed., 53 (2014), 654–661 | DOI

[19] Weber T., Dshemuchadse J., Kobas M., Conrad M., Harbrecht B., Steurer W., “Large, larger, largest—a family of cluster-based tantalum copper aluminides with giant unit cells. I: Structure solution and refinement”, Acta crystallogr. B, 65 (2009), 308–317 | DOI

[20] Gordon E.K., Samson S., Kamb W.B., “Crystal structure of the zeolite paulingite”, Science., 154 (1966), 1004–1007 | DOI

[21] Dolbilin N.P., Shtogrin M.I., “Lokalnyi kriterii dlya kristallicheskoi struktury”, Tez. IX Vsesoyuz. geom. konf., Kishinev, 1988, 99

[22] Dolbilin N., Schattschneider D., “The local theorem for tilings”, Quasicrystals and discrete geometry, Fields Inst. Monogr., 10, Amer. Math. Soc., Providence, RI, 1998, 193–199 | MR | Zbl

[23] Schattschneider D., Dolbilin N., “One corona is enough for the Euclidean plane”, Quasicrystals and discrete geometry, Fields Inst. Monogr., 10, Amer. Math. Soc., Providence, RI, 1998, 207–246 | MR | Zbl

[24] Ilyushin G.D., Demyanets L.N., “Ionnye provodniki v klasse Na, Zr-silikatov. Novoe semeistvo trekhmernykh provodnikov — kristally tipa lovozerita Na$_{8-x}$H$_x$ZrSi$_6$O$_{18}$”, Kristallografiya, 31:1 (1986), 76–81

[25] Pekov I.V., Krivovichev S.V., Zolotarev A.A., Yakovenchuk V.N., Armbruster T., Pakhomovsky Ya.A., “Crystal chemistry and nomenclature of the lovozerite group”, Eur. J. Mineral., 21 (2009), 1061–1071 | DOI

[26] Grey I.E., Macrae C.M., Mumme W.G., Pring A., “Townendite, Na$_8$ZrSi$_6$O$_{18}$, a new uranium-bearing lovozerite group mineral from the Ilímaussaq alkaline complex, Southern Greenland”, Amer. Mineral., 95 (2010), 646–650 | DOI

[27] Gerasimovskii V.I., “Lovozerit — novyi mineral”, DAN SSSR, 25:9 (1939), 751–754

[28] Ilyukhin V.V., Belov N.V., “Kristallicheskaya struktura lovozerita”, DAN SSSR, 131:1 (1960), 176–179

[29] Chernitsova N.M., Pudovkina Z.V., Voronkov A.A., Kapustin Yu.L., Pyatenko Yu.A., “O novom kristallokhimicheskom semeistve lovozerita”, Zap. Vsesoyuz. mineral. o-va, 1975, no. 1, 18–27

[30] Malinovsky Yu.A., Burzlaff H., Rothammel W., “Structures of the lovozerite type—a quantitative investigation”, Acta crystallogr. B., 49 (1993), 158–164 | DOI

[31] Pekov I.V., Ekimenkova I.A., Chukanov N.V., Zadov A.E., Yamnova H.A., Egorov-Tismenko Yu.K., “Litvinskit Na$_2(\square $, Na, Mn$)$Zr$[$Si$_6$O$_{12}$(OH, O)$_6]$ — novyi mineral iz gruppy lovozerita”, Zap. Ros. mineral. o-va, 2000, no. 1, 45–53

[32] Pekov I.V., Chukanov N.V., Yamnova N.A., Egorov-Tismenko Yu.K., Zadov A.E., “Novyi mineral kapustinit, Na$_{5.5}$Mn$_{0.25}$ZrSi$_6$O$_{16}($OH$)_2$, iz Lovozerskogo massiva (Kolskii poluostrov) i novye dannye po geneticheskoi kristallokhimii gruppy lovozerita”, Zap. Ros. mineral. o-va, 2003, no. 6, 1–14

[33] Shevchenko V.Ya., Krivovichev S.V., Mackay A.L., “Cellular automata and local order in the structural chemistry of the lovozerite group minerals”, Glass Phys. Chem., 36 (2010), 1–9 | DOI

[34] Zolotarev A.A., Krivovichev S.V., Yakovenchuk V.N., Armbruster T., Pakhomovsky Ya.A., “Trigonal members of the lovozerite group: A re-investigation”, Minerals as advanced materials. I, eds. S.V. Krivovichev, Springer, Berlin, 2008, 79–86 | DOI

[35] Otroschenko L.P., Simonov V.I., Belov N.V., “Kristallicheskaya struktura natrii-margantsevogo sinteticheskogo metasilikata Na$_5($Mn, Na$)_3$Mn$[$Si$_6$O$_{18}]$”, DAN SSSR, 208:4 (1973), 845–848

[36] Kahlenberg V., “Preparation and crystal structure of Na$_2$SrSi$_2$O$_6$—a cyclosilicate with perovskite-type features”, J. Alloys Compd., 366 (2004), 132–135 | DOI

[37] Chernitsova N.M., Pudovkina Z.V., Voronkov A.A., Ilyukhin V.V., Pyatenko Yu.A., “Imandrit Na$_{12}$Ca$_3$Fe$_2[$Si$_6$O$_{18}]_2$ — predstavitel novoi vetvi v strukturnom semeistve lovozerita”, DAN SSSR, 252:3 (1980), 618–621

[38] Simonov M.A., Egorov-Tismenko Yu.K., Belov N.V., “Kristallicheskaya struktura Na, Cd-silikata Na$_2$CdSi$_2$O$_6 ={}$Na$_6$Cd$_3[$Si$_6$O$_{18}]$”, DAN SSSR, 175:1 (1967), 80–83

[39] Otroschenko L.P., Simonov V.I., Belov N.V., “Utochnenie kristallicheskikh struktur dvukh Mn-silikatov Na$_2$Mn$_2$Si$_2$O$_7$ i Na$_5($Mn, Na$)_3$MnSi$_6$O$_{18}$”, DAN SSSR, 265:1 (1982), 76–79

[40] Tamazyan R.A., Malinovskii Yu.A., “Kristallicheskaya struktura i mikrodvoinikovanie Na$_5($Na$_{0.5+x}$Ca$_{0.5-x})_2($Nd$_x$Ca$_{1-x})_2[$Si$_6$O$_{18}]$”, Kristallografiya, 34:2 (1989), 310–315

[41] Chernitsova N.M., Pudovkina Z.V., Voronkov A.A., Pyatenko Yu.A., “Kristallicheskaya struktura koashvita Na$_6($Ca, Mn$)_{1+0.5x}($Fe$_x^{3+}$Ti$_{1-x})[$Si$_6$O$_{18}]$”, Mineral. zhurn., 2:5 (1980), 40–44

[42] Grünbaum B., Shephard G.C., “Tiling with congruent tiles”, Bull. Amer. Math. Soc., 3 (1980), 951–973 | DOI | MR | Zbl

[43] Goldsmith J.R., “A “simplexity principle” and its relation to “ease” of crystallization”, J. Geol., 61 (1953), 439–451 | DOI