Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_288_a6, author = {A. E. Zvonarev and A. M. Raigorodskii}, title = {Improvements of the {Frankl--R\"odl} theorem on the number of edges of a~hypergraph with forbidden intersections, and their consequences in the problem of finding the chromatic number of a~space with forbidden equilateral triangle}, journal = {Informatics and Automation}, pages = {109--119}, publisher = {mathdoc}, volume = {288}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a6/} }
TY - JOUR AU - A. E. Zvonarev AU - A. M. Raigorodskii TI - Improvements of the Frankl--R\"odl theorem on the number of edges of a~hypergraph with forbidden intersections, and their consequences in the problem of finding the chromatic number of a~space with forbidden equilateral triangle JO - Informatics and Automation PY - 2015 SP - 109 EP - 119 VL - 288 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a6/ LA - ru ID - TRSPY_2015_288_a6 ER -
%0 Journal Article %A A. E. Zvonarev %A A. M. Raigorodskii %T Improvements of the Frankl--R\"odl theorem on the number of edges of a~hypergraph with forbidden intersections, and their consequences in the problem of finding the chromatic number of a~space with forbidden equilateral triangle %J Informatics and Automation %D 2015 %P 109-119 %V 288 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a6/ %G ru %F TRSPY_2015_288_a6
A. E. Zvonarev; A. M. Raigorodskii. Improvements of the Frankl--R\"odl theorem on the number of edges of a~hypergraph with forbidden intersections, and their consequences in the problem of finding the chromatic number of a~space with forbidden equilateral triangle. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 109-119. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a6/
[1] Frankl P., Rödl V., “Forbidden intersections”, Trans. Amer. Math. Soc., 300:1 (1987), 259–286 | DOI | MR | Zbl
[2] Zvonarev A.E., Raigorodskii A.M., Samirov D.V., Kharlamova A.A., “Uluchshenie teoremy Frankla–Rëdlya o chisle reber gipergrafa s zapretami na peresecheniya”, DAN, 457:2 (2014), 144–146 | MR | Zbl
[3] Zvonarëv A.E., Raigorodskii A.M., Samirov D.V., Kharlamova A.A., “O khromaticheskom chisle prostranstva s zapreschennym ravnostoronnim treugolnikom”, Mat. sb., 205:9 (2014), 97–120 | DOI | MR | Zbl
[4] Ahlswede R., Khachatrian L.H., “The complete nontrivial-intersection theorem for systems of finite sets”, J. Comb. Theory A, 76 (1996), 121–138 | DOI | MR | Zbl
[5] Ahlswede R., Khachatrian L.H., “The complete intersection theorem for systems of finite sets”, Eur. J. Comb., 18 (1997), 125–136 | DOI | MR | Zbl
[6] Ahlswede R., Blinovsky V., Lectures on advances in combinatorics, Springer, Berlin, 2008 | MR | Zbl
[7] Raigorodskii A.M., Veroyatnost i algebra v kombinatorike, 2-e izd., MTsNMO, M., 2010
[8] Raigorodskii A.M., Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007
[9] Borg P., “Intersecting families of sets and permutations: A survey”, Advances in mathematics research, 16, eds. A.R. Baswell, Nova Science Publ., New York, 2012, 287–302 | MR
[10] Borg P., “The maximum sum and the maximum product of sizes of cross-intersecting families”, Eur. J. Comb., 35 (2014), 117–130 | DOI | MR | Zbl
[11] Frankl P., Lee S.J., Siggers M., Tokushige N., “An Erdős–Ko–Rado theorem for cross $t$-intersecting families”, J. Comb. Theory A, 128 (2014), 207–249, arXiv: 1303.0657 [math.CO] | DOI | MR | Zbl
[12] Frankl P., Wilson R.M., “Intersection theorems with geometric consequences”, Combinatorica, 1 (1981), 357–368 | DOI | MR | Zbl
[13] Ponomarenko E.I., Raigorodskii A.M., “Uluchshenie teoremy Frankla–Uilsona o chisle reber gipergrafa s zapretami na peresecheniya”, DAN, 454:3 (2014), 268–269 | MR | Zbl
[14] Ponomarenko E.I., Raigorodskii A.M., “Novye otsenki v zadache o chisle reber gipergrafa s zapretami na peresecheniya”, Probl. peredachi inform., 49:4 (2013), 98–104 | MR | Zbl
[15] Ponomarenko E.I., Raigorodskii A.M., “Novye verkhnie otsenki chisel nezavisimosti grafov s vershinami v $\{-1,0,1\}^n$ i ikh prilozheniya v zadachakh o khromaticheskikh chislakh distantsionnykh grafov”, Mat. zametki, 96:1 (2014), 138–147 | DOI
[16] Baker R.C., Harman G., Pintz J., “The difference between consecutive primes. II”, Proc. London Math. Soc. Ser. 3, 83 (2001), 532–562 | DOI | MR | Zbl
[17] Mak-Vilyams F.Dzh., Sloen N.Dzh.A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979
[18] Zinovev V.A., Erikson T., “O kaskadnykh ravnovesnykh kodakh, prevyshayuschikh granitsu Varshamova–Gilberta”, Probl. peredachi inform., 23:1 (1987), 110–111 | MR | Zbl
[19] Hadwiger H., “Ein Überdeckungssatz für den Euklidischen Raum”, Port. math., 4 (1944), 140–144 | MR | Zbl
[20] Raigorodskii A.M., Khromaticheskie chisla, MTsNMO, M., 2003
[21] Pach J., Agarwal P.K., Combinatorial geometry, J. Wiley Sons, New York, 1995 | MR | Zbl
[22] Klee V., Wagon S., Old and new unsolved problems in plane geometry and number theory, Math. Assoc. America, Washington, DC, 1991 | MR | Zbl
[23] Soifer A., The mathematical coloring book: Mathematics of coloring and the colorful life of its creators, Springer, New York, 2009 | MR | Zbl
[24] Brass P., Moser W., Pach J., Research problems in discrete geometry, Springer, New York, 2005 | MR | Zbl
[25] Raigorodskii A.M., “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (2001), 107–146 | DOI | MR | Zbl
[26] Raigorodskii A.M., “Cliques and cycles in distance graphs and graphs of diameters”, Discrete geometry and algebraic combinatorics, Contemp. Math., 625, Amer. Math. Soc., Providence, RI, 2014, 93–109 | DOI
[27] Raigorodskii A.M., “Coloring distance graphs and graphs of diameters”, Thirty essays on geometric graph theory, eds. J. Pach, Springer, Berlin, 2013, 429–460 | DOI | MR | Zbl
[28] Székely L.A., “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his mathematics II, Bolyai Soc. Math. Stud., 11, Springer, Berlin, 2002, 649–666 | MR | Zbl
[29] Graham R.L., Rothschild B.L., Spencer J.H., Ramsey theory, 2nd ed., J. Wily Sons, New York, 1990 | MR | Zbl
[30] Raigorodskii A.M., “O khromaticheskom chisle prostranstva”, UMN, 55:2 (2000), 147–148 | DOI | MR | Zbl
[31] Frankl P., Rödl V., “All triangles are Ramsey”, Trans. Amer. Math. Soc., 297:2 (1986), 777–779 | DOI | MR | Zbl
[32] Frankl P., Rödl V., “A partition property of simplices in Euclidean space”, J. Amer. Math. Soc., 3:1 (1990), 1–7 | DOI | MR | Zbl
[33] Raigorodskii A.M., Samirov D.V., “Khromaticheskie chisla prostranstv s zapreschennymi odnotsvetnymi treugolnikami”, Mat. zametki, 93:1 (2013), 117–126 | DOI | MR | Zbl
[34] Samirov D.V., Raigorodskii A.M., “Novye nizhnie otsenki khromaticheskogo chisla prostranstva s zapreschennymi ravnobedrennymi treugolnikami”, Dinamicheskie sistemy, Itogi nauki i tekhniki. Sovr. matematika i ee pril. Tematich. obzory, 125, VINITI, M., 2013, 252–268
[35] Samirov D.V., Raigorodskii A.M., “Novye otsenki v zadache o khromaticheskom chisle prostranstva s zapreschennymi ravnobedrennymi treugolnikami”, DAN, 456:3 (2014), 280–283 | MR | Zbl