Improvements of the Frankl--R\"odl theorem on the number of edges of a~hypergraph with forbidden intersections, and their consequences in the problem of finding the chromatic number of a~space with forbidden equilateral triangle
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 109-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

We survey the results (both old and new) related to the classical Frankl–Rödl theorem on the upper bound for the product of cardinalities of edge sets of two hypergraphs satisfying the condition that the intersection of any two edges of different hypergraphs cannot consist of a prescribed number of vertices. We also present corollaries to these results in the problem of finding the chromatic number of a space with a forbidden equilateral triangle with monochromatic vertices.
@article{TRSPY_2015_288_a6,
     author = {A. E. Zvonarev and A. M. Raigorodskii},
     title = {Improvements of the {Frankl--R\"odl} theorem on the number of edges of a~hypergraph with forbidden intersections, and their consequences in the problem of finding the chromatic number of a~space with forbidden equilateral triangle},
     journal = {Informatics and Automation},
     pages = {109--119},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a6/}
}
TY  - JOUR
AU  - A. E. Zvonarev
AU  - A. M. Raigorodskii
TI  - Improvements of the Frankl--R\"odl theorem on the number of edges of a~hypergraph with forbidden intersections, and their consequences in the problem of finding the chromatic number of a~space with forbidden equilateral triangle
JO  - Informatics and Automation
PY  - 2015
SP  - 109
EP  - 119
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a6/
LA  - ru
ID  - TRSPY_2015_288_a6
ER  - 
%0 Journal Article
%A A. E. Zvonarev
%A A. M. Raigorodskii
%T Improvements of the Frankl--R\"odl theorem on the number of edges of a~hypergraph with forbidden intersections, and their consequences in the problem of finding the chromatic number of a~space with forbidden equilateral triangle
%J Informatics and Automation
%D 2015
%P 109-119
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a6/
%G ru
%F TRSPY_2015_288_a6
A. E. Zvonarev; A. M. Raigorodskii. Improvements of the Frankl--R\"odl theorem on the number of edges of a~hypergraph with forbidden intersections, and their consequences in the problem of finding the chromatic number of a~space with forbidden equilateral triangle. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 109-119. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a6/

[1] Frankl P., Rödl V., “Forbidden intersections”, Trans. Amer. Math. Soc., 300:1 (1987), 259–286 | DOI | MR | Zbl

[2] Zvonarev A.E., Raigorodskii A.M., Samirov D.V., Kharlamova A.A., “Uluchshenie teoremy Frankla–Rëdlya o chisle reber gipergrafa s zapretami na peresecheniya”, DAN, 457:2 (2014), 144–146 | MR | Zbl

[3] Zvonarëv A.E., Raigorodskii A.M., Samirov D.V., Kharlamova A.A., “O khromaticheskom chisle prostranstva s zapreschennym ravnostoronnim treugolnikom”, Mat. sb., 205:9 (2014), 97–120 | DOI | MR | Zbl

[4] Ahlswede R., Khachatrian L.H., “The complete nontrivial-intersection theorem for systems of finite sets”, J. Comb. Theory A, 76 (1996), 121–138 | DOI | MR | Zbl

[5] Ahlswede R., Khachatrian L.H., “The complete intersection theorem for systems of finite sets”, Eur. J. Comb., 18 (1997), 125–136 | DOI | MR | Zbl

[6] Ahlswede R., Blinovsky V., Lectures on advances in combinatorics, Springer, Berlin, 2008 | MR | Zbl

[7] Raigorodskii A.M., Veroyatnost i algebra v kombinatorike, 2-e izd., MTsNMO, M., 2010

[8] Raigorodskii A.M., Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007

[9] Borg P., “Intersecting families of sets and permutations: A survey”, Advances in mathematics research, 16, eds. A.R. Baswell, Nova Science Publ., New York, 2012, 287–302 | MR

[10] Borg P., “The maximum sum and the maximum product of sizes of cross-intersecting families”, Eur. J. Comb., 35 (2014), 117–130 | DOI | MR | Zbl

[11] Frankl P., Lee S.J., Siggers M., Tokushige N., “An Erdős–Ko–Rado theorem for cross $t$-intersecting families”, J. Comb. Theory A, 128 (2014), 207–249, arXiv: 1303.0657 [math.CO] | DOI | MR | Zbl

[12] Frankl P., Wilson R.M., “Intersection theorems with geometric consequences”, Combinatorica, 1 (1981), 357–368 | DOI | MR | Zbl

[13] Ponomarenko E.I., Raigorodskii A.M., “Uluchshenie teoremy Frankla–Uilsona o chisle reber gipergrafa s zapretami na peresecheniya”, DAN, 454:3 (2014), 268–269 | MR | Zbl

[14] Ponomarenko E.I., Raigorodskii A.M., “Novye otsenki v zadache o chisle reber gipergrafa s zapretami na peresecheniya”, Probl. peredachi inform., 49:4 (2013), 98–104 | MR | Zbl

[15] Ponomarenko E.I., Raigorodskii A.M., “Novye verkhnie otsenki chisel nezavisimosti grafov s vershinami v $\{-1,0,1\}^n$ i ikh prilozheniya v zadachakh o khromaticheskikh chislakh distantsionnykh grafov”, Mat. zametki, 96:1 (2014), 138–147 | DOI

[16] Baker R.C., Harman G., Pintz J., “The difference between consecutive primes. II”, Proc. London Math. Soc. Ser. 3, 83 (2001), 532–562 | DOI | MR | Zbl

[17] Mak-Vilyams F.Dzh., Sloen N.Dzh.A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979

[18] Zinovev V.A., Erikson T., “O kaskadnykh ravnovesnykh kodakh, prevyshayuschikh granitsu Varshamova–Gilberta”, Probl. peredachi inform., 23:1 (1987), 110–111 | MR | Zbl

[19] Hadwiger H., “Ein Überdeckungssatz für den Euklidischen Raum”, Port. math., 4 (1944), 140–144 | MR | Zbl

[20] Raigorodskii A.M., Khromaticheskie chisla, MTsNMO, M., 2003

[21] Pach J., Agarwal P.K., Combinatorial geometry, J. Wiley Sons, New York, 1995 | MR | Zbl

[22] Klee V., Wagon S., Old and new unsolved problems in plane geometry and number theory, Math. Assoc. America, Washington, DC, 1991 | MR | Zbl

[23] Soifer A., The mathematical coloring book: Mathematics of coloring and the colorful life of its creators, Springer, New York, 2009 | MR | Zbl

[24] Brass P., Moser W., Pach J., Research problems in discrete geometry, Springer, New York, 2005 | MR | Zbl

[25] Raigorodskii A.M., “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (2001), 107–146 | DOI | MR | Zbl

[26] Raigorodskii A.M., “Cliques and cycles in distance graphs and graphs of diameters”, Discrete geometry and algebraic combinatorics, Contemp. Math., 625, Amer. Math. Soc., Providence, RI, 2014, 93–109 | DOI

[27] Raigorodskii A.M., “Coloring distance graphs and graphs of diameters”, Thirty essays on geometric graph theory, eds. J. Pach, Springer, Berlin, 2013, 429–460 | DOI | MR | Zbl

[28] Székely L.A., “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his mathematics II, Bolyai Soc. Math. Stud., 11, Springer, Berlin, 2002, 649–666 | MR | Zbl

[29] Graham R.L., Rothschild B.L., Spencer J.H., Ramsey theory, 2nd ed., J. Wily Sons, New York, 1990 | MR | Zbl

[30] Raigorodskii A.M., “O khromaticheskom chisle prostranstva”, UMN, 55:2 (2000), 147–148 | DOI | MR | Zbl

[31] Frankl P., Rödl V., “All triangles are Ramsey”, Trans. Amer. Math. Soc., 297:2 (1986), 777–779 | DOI | MR | Zbl

[32] Frankl P., Rödl V., “A partition property of simplices in Euclidean space”, J. Amer. Math. Soc., 3:1 (1990), 1–7 | DOI | MR | Zbl

[33] Raigorodskii A.M., Samirov D.V., “Khromaticheskie chisla prostranstv s zapreschennymi odnotsvetnymi treugolnikami”, Mat. zametki, 93:1 (2013), 117–126 | DOI | MR | Zbl

[34] Samirov D.V., Raigorodskii A.M., “Novye nizhnie otsenki khromaticheskogo chisla prostranstva s zapreschennymi ravnobedrennymi treugolnikami”, Dinamicheskie sistemy, Itogi nauki i tekhniki. Sovr. matematika i ee pril. Tematich. obzory, 125, VINITI, M., 2013, 252–268

[35] Samirov D.V., Raigorodskii A.M., “Novye otsenki v zadache o khromaticheskom chisle prostranstva s zapreschennymi ravnobedrennymi treugolnikami”, DAN, 456:3 (2014), 280–283 | MR | Zbl