Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_288_a4, author = {A. A. Gaifullin}, title = {Embedded flexible spherical cross-polytopes with nonconstant volumes}, journal = {Informatics and Automation}, pages = {67--94}, publisher = {mathdoc}, volume = {288}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a4/} }
A. A. Gaifullin. Embedded flexible spherical cross-polytopes with nonconstant volumes. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 67-94. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a4/
[1] Alekseevskii D.V., Vinberg E.B., Solodovnikov A.S., “Geometriya prostranstv postoyannoi krivizny”, Geometriya–2, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 29, VINITI, M., 1988, 5–146
[2] Alexander R., “Lipschitzian mappings and total mean curvature of polyhedral surfaces. I”, Trans. Amer. Math. Soc., 288 (1985), 661–678 | DOI | MR | Zbl
[3] Alexandrov V., “An example of a flexible polyhedron with nonconstant volume in the spherical space”, Beitr. Algebra Geom., 38:1 (1997), 11–18 | MR | Zbl
[4] Aomoto K., “Analytic structure of Schläfli function”, Nagoya Math. J., 68 (1977), 1–16 | MR | Zbl
[5] Bennett G.T., “Deformable octahedra”, Proc. London Math. Soc. Ser. 2, 10 (1912), 309–343 | DOI | MR
[6] Bricard R., “Mémoire sur la théorie de l'octaèdre articulé”, J. Math. Pures Appl. Sér. 5, 3 (1897), 113–148 | Zbl
[7] Connelly R., “A counterexample to the rigidity conjecture for polyhedra”, Publ. Math. Inst. Hautes Étud. Sci., 47 (1977), 333–338 | DOI | MR | Zbl
[8] Connelly R., “Conjectures and open questions in rigidity”, Proc. Int. Congr. Math., Helsinki, 1978, V. 1, Acad. Sci. Fennica, Helsinki, 1980, 407–414 | MR
[9] Connelly R., Sabitov I., Walz A., “The bellows conjecture”, Beitr. Algebra Geom., 38:1 (1997), 1–10 | MR | Zbl
[10] Coxeter H.S.M., “The functions of Schläfli and Lobatschefsky”, Q. J. Math., 6 (1935), 13–29 | DOI | MR
[11] Gaifullin A.A., “Sabitov polynomials for volumes of polyhedra in four dimensions”, Adv. Math., 252 (2014), 586–611, arXiv: 1108.6014 [math.MG] | DOI | MR | Zbl
[12] Gaifullin A.A., “Generalization of Sabitov's theorem to polyhedra of arbitrary dimensions”, Discrete Comput. Geom., 52:2 (2014), 195–220, arXiv: 1210.5408 [math.MG] | DOI | MR | Zbl
[13] Gaifullin A.A., “Izgibaemye kross-politopy v prostranstvakh postoyannoi krivizny”, Tr. MIAN, 286, 2014, 88–128 | Zbl
[14] Gaifullin A.A., “Volumes of flexible polyhedra”, Dni geometrii v Novosibirske – 2014, Tez. dokl. Mezhdunar. konf., posv. 85-letiyu Yu.G. Reshetnyaka, Novosibirsk, 24–27 sent. 2014, IM SO RAN, Novosibirsk, 2014, 98–99
[15] Massi U., Stollings Dzh., Algebraicheskaya topologiya. Vvedenie, Mir, M., 1977 | MR
[16] Prasolov V.V., Elementy kombinatornoi i differentsialnoi topologii, MTsNMO, M., 2004
[17] Sabitov I.Kh., “Ob'em mnogogrannika kak funktsiya ego metriki”, Fund. prikl. matematika, 2:4 (1996), 1235–1246 | MR | Zbl
[18] Sabitov I.Kh., “Obobschennaya formula Gerona–Tartalya i nekotorye ee sledstviya”, Mat. sb., 189:10 (1998), 105–134 | DOI | MR | Zbl
[19] Sabitov I.Kh., “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom., 20:4 (1998), 405–425 | DOI | MR | Zbl
[20] Sabitov I.Kh., “Algebraicheskie metody resheniya mnogogrannikov”, UMN, 66:3 (2011), 3–66 | DOI | MR | Zbl
[21] Stachel H., “Flexible cross-polytopes in the Euclidean $4$-space”, J. Geom. Graph., 4:2 (2000), 159–167 | MR | Zbl
[22] Stachel H., “Flexible octahedra in the hyperbolic space”, Non-Euclidean geometries, János Bolyai memorial volume, Math. Appl., 581, eds. A. Prékopa et al., Springer, New York, 2006, 209–225 | MR | Zbl