Geometry of lifts of tilings of Euclidean spaces
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 49-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of canonical scalings is substantiated for lifts of tilings of Euclidean space. A new combinatorial-geometric approach to the construction of a generatrix of a tiling is proposed. The construction is based on a simple and geometrically transparent operation of lifting a face to an earlier lifted neighbor. The approach is applied to the fundamental theorem of polytope theory related to the classical problem of validity of Voronoi's conjecture for parallelotopes. So far Voronoi's conjecture has been proved only for some special families of parallelotopes, and the theorem states that Voronoi's conjecture holds for a given parallelotope $P$ if and only if there exists a canonical scaling for the corresponding tiling $\mathcal T_P$. A new, significantly shortened (compared with the available ones), geometric proof of this fundamental theorem is given.
@article{TRSPY_2015_288_a3,
     author = {A. A. Gavrilyuk},
     title = {Geometry of lifts of tilings of {Euclidean} spaces},
     journal = {Informatics and Automation},
     pages = {49--66},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a3/}
}
TY  - JOUR
AU  - A. A. Gavrilyuk
TI  - Geometry of lifts of tilings of Euclidean spaces
JO  - Informatics and Automation
PY  - 2015
SP  - 49
EP  - 66
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a3/
LA  - ru
ID  - TRSPY_2015_288_a3
ER  - 
%0 Journal Article
%A A. A. Gavrilyuk
%T Geometry of lifts of tilings of Euclidean spaces
%J Informatics and Automation
%D 2015
%P 49-66
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a3/
%G ru
%F TRSPY_2015_288_a3
A. A. Gavrilyuk. Geometry of lifts of tilings of Euclidean spaces. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 49-66. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a3/

[1] Fedorov E.S., Nachala ucheniya o figurakh', Tip. Imper. AN, SPb., 1885

[2] Dolbilin N.P., “Svoistva granei paralleloedrov”, Tr. MIAN, 266, 2009, 112–126 | MR | Zbl

[3] Minkowski H., “Allgemeine Lehrsätze über die convexen Polyeder”, Nachr. Ges. Wiss. Göttingen, 1897, 198–219 | Zbl

[4] Delaunay B., “Sur la partition régulière de l'espace à 4 dimensions”, Izv. AN SSSR. VII ser. Otd. fiz.-mat. nauk, 1929, no. 1, 79–110 | Zbl

[5] Venkov B.A., “Ob odnom klasse evklidovykh mnogogrannikov”, Vestn. Leningr. un-ta. Matematika. Fizika. Khimiya, 9 (1954), 11–31 | MR

[6] Voronoï G., “Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire: Recherches sur les paralléloèdres primitifs”, J. reine angew. Math., 134 (1908), 198–287 ; 136 (1909), 67–178 ; Вороной Г.Ф., Собр. соч., Т. 2, Изд-во АН УССР, Киев, 1952 | Zbl | Zbl

[7] Zhitomirskii O.K., “Verschärfung eines Satzes von Voronoi”, Zhurn. Leningr. fiz.-mat. o-va, 2 (1929), 131–151

[8] Ordine A., Proof of the Voronoi conjecture on parallelotopes in a new special case, PhD Thesis, Queen's Univ., Kingston, 2005 http://higeom.math.msu.su/people/garber/Ordine.pdf | MR

[9] Garber A., Gavrilyuk A., Magazinov A., “The Voronoi conjecture for parallelohedra with simply connected $\delta $-surfaces”, Discrete Comput. Geom., 53:2 (2015), 245–260, arXiv: 1212.1019v1 [math.MG] | DOI | MR

[10] Grishukhin V.P., “Summa paralleloedra i otrezka po Minkovskomu”, Mat. sb., 197:10 (2006), 15–32 | DOI | MR | Zbl

[11] Magazinov A., Voronoi's conjecture for extensions of Voronoi parallelohedra, E-print, 2013, arXiv: 1308.6225v2 [math.MG]

[12] Erdahl R., “Zonotopes, dicings, and Voronoi's conjecture on parallelohedra”, Eur. J. Comb., 20:6 (1999), 527–549 | DOI | MR | Zbl

[13] Davis C., “The set of non-linearity of a convex piecewise-linear function”, Scripta math., 24 (1959), 219–228 | MR | Zbl

[14] McMullen P., “Duality, sections and projections of certain Euclidean tilings”, Geom. dedicata, 49:2 (1994), 183–202 | DOI | MR | Zbl

[15] Deza M., Grishukhin V., “Properties of parallelotopes equivalent to Voronoi's conjecture”, Eur. J. Comb., 25:4 (2004), 517–533 | DOI | MR | Zbl

[16] Aleksandrov A.D., “O zapolnenii prostranstva mnogogrannikami”, Vestn. Leningr. un-ta. Matematika. Fizika. Khimiya, 9 (1954), 33–43

[17] Ryshkov S.S., Rybnikov K.A., Jr., “The theory of quality translations with applications to tilings”, Eur. J. Comb., 18:4 (1997), 431–444 | DOI | MR | Zbl

[18] Berdon A., Geometriya diskretnykh grupp, Nauka, M., 1986 | MR