Three-dimensional manifolds with poor spines
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 38-48

Voir la notice de l'article provenant de la source Math-Net.Ru

A special spine of a $3$-manifold is said to be poor if it does not contain proper simple subpolyhedra. Using the Turaev–Viro invariants, we establish that every compact $3$-manifold $M$ with connected nonempty boundary has a finite number of poor special spines. Moreover, all poor special spines of the manifold $M$ have the same number of true vertices. We prove that the complexity of a compact hyperbolic $3$-manifold with totally geodesic boundary that has a poor special spine with two $2$-components and $n$ true vertices is equal to $n$. Such manifolds are constructed for infinitely many values of $n$.
@article{TRSPY_2015_288_a2,
     author = {A. Yu. Vesnin and V. G. Turaev and E. A. Fominykh},
     title = {Three-dimensional manifolds with poor spines},
     journal = {Informatics and Automation},
     pages = {38--48},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a2/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
AU  - V. G. Turaev
AU  - E. A. Fominykh
TI  - Three-dimensional manifolds with poor spines
JO  - Informatics and Automation
PY  - 2015
SP  - 38
EP  - 48
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a2/
LA  - ru
ID  - TRSPY_2015_288_a2
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%A V. G. Turaev
%A E. A. Fominykh
%T Three-dimensional manifolds with poor spines
%J Informatics and Automation
%D 2015
%P 38-48
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a2/
%G ru
%F TRSPY_2015_288_a2
A. Yu. Vesnin; V. G. Turaev; E. A. Fominykh. Three-dimensional manifolds with poor spines. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 38-48. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a2/