Three-dimensional manifolds with poor spines
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 38-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

A special spine of a $3$-manifold is said to be poor if it does not contain proper simple subpolyhedra. Using the Turaev–Viro invariants, we establish that every compact $3$-manifold $M$ with connected nonempty boundary has a finite number of poor special spines. Moreover, all poor special spines of the manifold $M$ have the same number of true vertices. We prove that the complexity of a compact hyperbolic $3$-manifold with totally geodesic boundary that has a poor special spine with two $2$-components and $n$ true vertices is equal to $n$. Such manifolds are constructed for infinitely many values of $n$.
@article{TRSPY_2015_288_a2,
     author = {A. Yu. Vesnin and V. G. Turaev and E. A. Fominykh},
     title = {Three-dimensional manifolds with poor spines},
     journal = {Informatics and Automation},
     pages = {38--48},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a2/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
AU  - V. G. Turaev
AU  - E. A. Fominykh
TI  - Three-dimensional manifolds with poor spines
JO  - Informatics and Automation
PY  - 2015
SP  - 38
EP  - 48
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a2/
LA  - ru
ID  - TRSPY_2015_288_a2
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%A V. G. Turaev
%A E. A. Fominykh
%T Three-dimensional manifolds with poor spines
%J Informatics and Automation
%D 2015
%P 38-48
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a2/
%G ru
%F TRSPY_2015_288_a2
A. Yu. Vesnin; V. G. Turaev; E. A. Fominykh. Three-dimensional manifolds with poor spines. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 38-48. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a2/

[1] Matveev S., Algorithmic topology and classification of 3-manifolds, Springer, Berlin, 2007 | MR | Zbl

[2] Matveev S.V., “Tabulirovanie trekhmernykh mnogoobrazii”, UMN, 60:4 (2005), 97–122 | DOI | MR | Zbl

[3] Frigerio R., Martelli B., Petronio C., “Small hyperbolic 3-manifolds with geodesic boundary”, Exp. Math., 13:2 (2004), 171–184 | DOI | MR | Zbl

[4] Matveev S., Fominykh E., Potapov V., Tarkaev V., Atlas of 3-manifolds http://www.matlas.math.csu.ru

[5] Anisov S., “Exact values of complexity for an infinite number of 3-manifolds”, Moscow Math. J., 5:2 (2005), 305–310 | MR | Zbl

[6] Frigerio R., Martelli B., Petronio C., “Complexity and Heegaard genus of an infinite class of compact 3-manifolds”, Pac. J. Math., 210:2 (2003), 283–297 | DOI | MR | Zbl

[7] Vesnin A.Yu., Fominykh E.A., “Tochnye znacheniya slozhnosti mnogoobrazii Paolyutsi–Tsimmermana”, DAN, 439:6 (2011), 727–729 | MR | Zbl

[8] Vesnin A.Yu., Fominykh E.A., “O slozhnosti trekhmernykh giperbolicheskikh mnogoobrazii s geodezicheskim kraem”, Sib. mat. zhurn., 53:4 (2012), 781–793 | MR | Zbl

[9] Jaco W., Rubinstein H., Tillmann S., “Minimal triangulations for an infinite family of lens spaces”, J. Topol., 2:1 (2009), 157–180 | DOI | MR | Zbl

[10] Jaco W., Rubinstein J.H., Tillmann S., “Coverings and minimal triangulations of 3-manifolds”, Algebr. Geom. Topol., 11:3 (2011), 1257–1265 | DOI | MR | Zbl

[11] Vesnin A.Yu., Tarkaev V.V., Fominykh E.A., “O slozhnosti trekhmernykh giperbolicheskikh mnogoobrazii s kaspami”, DAN, 456:1 (2014), 11–14 | MR | Zbl

[12] Vesnin A.Yu., Tarkaev V.V., Fominykh E.A., “Trekhmernye giperbolicheskie mnogoobraziya s kaspami slozhnosti 10, imeyuschie maksimalnyi ob'em”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 74–87 | MR

[13] Matveev S., Petronio C., Vesnin A., “Two-sided asymptotic bounds for the complexity of some closed hyperbolic three-manifolds”, J. Aust. Math. Soc., 86:2 (2009), 205–219 | DOI | MR | Zbl

[14] Petronio C., Vesnin A., “Two-sided bounds for the complexity of cyclic branched coverings of two-bridge links”, Osaka J. Math., 46:4 (2009), 1077–1095 | MR | Zbl

[15] Fominykh E.A., “Khirurgii Dena na uzle vosmerka: verkhnyaya otsenka slozhnosti”, Sib. mat. zhurn., 52:3 (2011), 680–689 | MR | Zbl

[16] Fominykh E., Wiest B., “Upper bounds for the complexity of torus knot complements”, J. Knot Theory Ramif., 22:10 (2013), 1350053 | DOI | MR | Zbl

[17] Vesnin A.Yu., Fominykh E.A., “Dvustoronnie otsenki slozhnosti trekhmernykh giperbolicheskikh mnogoobrazii s geodezicheskim kraem”, Tr. MIAN, 286, 2014, 65–74 | Zbl

[18] Casler B.G., “An imbedding theorem for connected 3-manifolds with boundary”, Proc. Amer. Math. Soc., 16 (1965), 559–566 | MR | Zbl

[19] Miyamoto Y., “Volumes of hyperbolic manifolds with geodesic boundary”, Topology, 33:4 (1994), 613–629 | DOI | MR | Zbl

[20] Fujii M., “Hyperbolic 3-manifolds with totally geodesic boundary which are decomposed into hyperbolic truncated tetrahedra”, Tokyo J. Math., 13:2 (1990), 353–373 | DOI | MR | Zbl

[21] Fominykh E., Martelli B., “$k$-Normal surfaces”, J. Diff. Geom., 82:1 (2009), 101–114 | MR | Zbl

[22] Turaev V.G., Viro O.Y., “State sum invariants of 3-manifolds and quantum $6j$-symbols”, Topology, 31:4 (1992), 865–902 | DOI | MR | Zbl

[23] Benedetti R., Petronio C., “A finite graphic calculus for 3-manifolds”, Manuscr. math., 88 (1995), 291–310 | DOI | MR | Zbl