Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_288_a18, author = {Dirk Frettl\"oh and Kurt Hofstetter}, title = {Inductive rotation tilings}, journal = {Informatics and Automation}, pages = {269--280}, publisher = {mathdoc}, volume = {288}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a18/} }
Dirk Frettlöh; Kurt Hofstetter. Inductive rotation tilings. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 269-280. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a18/
[1] Baake M., Grimm U., Aperiodic order. V. 1: A mathematical invitation, Cambridge Univ. Press, Cambridge, 2013 | MR
[2] Dolbilin N.P., Lagarias J.C., Senechal M., “Multiregular point systems”, Discrete Comput. Geom., 20:4 (1998), 477–498 | DOI | MR | Zbl
[3] Frettlöh D., Richard C., “Dynamical properties of almost repetitive Delone sets”, Discrete Contin. Dyn. Syst., 34:2 (2014), 531–556 | MR | Zbl
[4] Frettlöh D., Sing B., “Computing modular coincidences for substitution tilings and point sets”, Discrete Comput. Geom., 37:3 (2007), 381–407 | DOI | MR | Zbl
[5] Grünbaum B., Shephard G.C., Tilings and patterns, W.H. Freeman, New York, 1987 | MR | Zbl
[6] Harriss E., Frettlöh D., Tilings encyclopedia http://tilings.math.uni-bielefeld.de/
[7] Hof A., “On diffraction by aperiodic structures”, Commun. Math. Phys., 169:1 (1995), 25–43 | DOI | MR | Zbl
[8] Hofstetter K., New irrational patterns http://hofstetterkurt.net/ip
[9] Lagarias J.C., Pleasants P.A.B., “Repetitive Delone sets and quasicrystals”, Ergodic Theory Dyn. Syst., 23:3 (2003), 831–867 | DOI | MR | Zbl
[10] Lee J.-Y., Moody R.V., Solomyak B., “Pure point dynamical and diffraction spectra”, Ann. Henri Poincaré, 3:5 (2002), 1003–1018 | DOI | MR | Zbl
[11] Lee J.-Y., Moody R.V., Solomyak B., “Consequences of pure point diffraction spectra for multiset substitution systems”, Discrete Comput. Geom., 29:4 (2003), 525–560 | DOI | MR | Zbl
[12] Parzer S., Irrational image generator, Diploma thesis, Vienna Univ. Technol., Vienna, 2013
[13] Penrose R., “The rôle of aesthetics in pure and applied mathematical research”, Bull. Inst. Math. Appl., 10 (1974), 266–271
[14] Radin C., Wolff M., “Space tilings and local isomorphism”, Geom. dedicata, 42:3 (1992), 355–360 | DOI | MR | Zbl
[15] Schlottmann M., “Generalized model sets and dynamical systems”, Directions in mathematical quasicrystals, CRM Monogr. Ser., 13, eds. M. Baake, R.V. Moody, Amer. Math. Soc., Providence, RI, 2000, 143–159 | MR | Zbl
[16] Shechtman D., Blech I., Gratias D., Cahn J.W., “Metallic phase with long-range orientational order and no translational symmetry”, Phys. Rev. Lett., 53:20 (1984), 1951–1954 | DOI
[17] Solomyak B., “Nonperiodicity implies unique composition for self-similar translationally finite tilings”, Discrete Comput. Geom., 20:2 (1998), 265–279 | DOI | MR | Zbl
[18] Wikipedia contributors, Substitution tiling, Wikipedia: The free encyclopedia. Sept. 16, 2014. http://en.wikipedia.org/wiki/Substitution_tiling