Inductive rotation tilings
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 269-280

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method for constructing aperiodic tilings is presented. The method is illustrated by constructing a particular tiling and its hull. The properties of this tiling and the hull are studied. In particular, it is shown that these tilings have a substitution rule and that they are nonperiodic, aperiodic, limit-periodic and pure point diffractive.
@article{TRSPY_2015_288_a18,
     author = {Dirk Frettl\"oh and Kurt Hofstetter},
     title = {Inductive rotation tilings},
     journal = {Informatics and Automation},
     pages = {269--280},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a18/}
}
TY  - JOUR
AU  - Dirk Frettlöh
AU  - Kurt Hofstetter
TI  - Inductive rotation tilings
JO  - Informatics and Automation
PY  - 2015
SP  - 269
EP  - 280
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a18/
LA  - en
ID  - TRSPY_2015_288_a18
ER  - 
%0 Journal Article
%A Dirk Frettlöh
%A Kurt Hofstetter
%T Inductive rotation tilings
%J Informatics and Automation
%D 2015
%P 269-280
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a18/
%G en
%F TRSPY_2015_288_a18
Dirk Frettlöh; Kurt Hofstetter. Inductive rotation tilings. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 269-280. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a18/