New results on torus cube packings and tilings
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 265-268

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the sequential random packing of integral translates of cubes $[0,N]^n$ into the torus $\mathbb Z^n/2N\mathbb Z^n$. Two particular cases are of special interest: (1) $N=2$, which corresponds to a discrete case of tilings, and (2) $N=\infty$, which corresponds to a case of continuous tilings. Both cases correspond to some special combinatorial structure, and we describe here new developments.
@article{TRSPY_2015_288_a17,
     author = {Mathieu Dutour Sikiri\'c and Yoshiaki Itoh},
     title = {New results on torus cube packings and tilings},
     journal = {Informatics and Automation},
     pages = {265--268},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a17/}
}
TY  - JOUR
AU  - Mathieu Dutour Sikirić
AU  - Yoshiaki Itoh
TI  - New results on torus cube packings and tilings
JO  - Informatics and Automation
PY  - 2015
SP  - 265
EP  - 268
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a17/
LA  - en
ID  - TRSPY_2015_288_a17
ER  - 
%0 Journal Article
%A Mathieu Dutour Sikirić
%A Yoshiaki Itoh
%T New results on torus cube packings and tilings
%J Informatics and Automation
%D 2015
%P 265-268
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a17/
%G en
%F TRSPY_2015_288_a17
Mathieu Dutour Sikirić; Yoshiaki Itoh. New results on torus cube packings and tilings. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 265-268. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a17/