Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_288_a17, author = {Mathieu Dutour Sikiri\'c and Yoshiaki Itoh}, title = {New results on torus cube packings and tilings}, journal = {Informatics and Automation}, pages = {265--268}, publisher = {mathdoc}, volume = {288}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a17/} }
Mathieu Dutour Sikirić; Yoshiaki Itoh. New results on torus cube packings and tilings. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 265-268. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a17/
[1] Alspach B., “The wonderful Walecki construction”, Bull. Inst. Comb. Appl., 52 (2008), 7–20 | MR | Zbl
[2] Brink D., “The inverse football pool problem”, J. Integer Seq., 14 (2011), 11 | MR | Zbl
[3] Corrádi K., Szabó S., “A combinatorial approach for Keller's conjecture”, Period. math. Hung., 21 (1990), 95–100 | DOI | MR | Zbl
[4] Debroni J., Eblen J.D., Langston M.A., Myrvold W., Shor P., Weerapurage D., “A complete resolution of the Keller maximum clique problem”, Proc. Twenty-Second Annual ACM–SIAM Symposium on Discrete Algorithms (SODA'11), Soc. Ind. Appl. Math., Philadelphia, PA, 2011, 129–135 | DOI | MR
[5] Dolbilin N., Itoh Y., Poyarkov A., “On random tilings and packings of space by cubes”, Proc. COE Workshop on Sphere Packings, Kyushu Univ., Fukuoka, 2005, 70–79
[6] Dutour Sikirić M., Itoh Y., “Combinatorial cube packings in the cube and the torus”, Eur. J. Comb., 31 (2010), 517–534 | DOI | MR | Zbl
[7] Dutour Sikirić M., Itoh Y., Random sequential packing of cubes, World Sci., Hackensack, NJ, 2011 | MR | Zbl
[8] Dutour Sikirić M., Itoh Y., Poyarkov A., “Cube packings, second moment and holes”, Eur. J. Comb., 28 (2007), 715–725 | DOI | MR | Zbl
[9] Itoh Y., Ueda S., “On packing density by a discrete random sequential packing of cubes in a space of $m$ dimensions”, Proc. Inst. Stat. Math., 31 (1983), 65–69 | Zbl
[10] Kaski P., Östergård P.R.J., “There are $1,132,835,421,602,062,347$ nonisomorphic one-factorizations of $K_{14}$”, J. Comb. Des., 17:2 (2009), 147–159 | DOI | MR | Zbl
[11] Keller O.-H., “Über die lückenlose Erfüllung des Raumes mit Würfeln”, J. reine angew. Math., 163 (1930), 231–248 | Zbl
[12] Lagarias J.C., Shor P.W., “Keller's cube-tiling conjecture is false in high dimensions”, Bull. Amer. Math. Soc., 27:2 (1992), 279–283 | DOI | MR | Zbl
[13] Mackey J., “A cube tiling of dimension eight with no facesharing”, Discrete Comput. Geom., 28:2 (2002), 275–279 | DOI | MR | Zbl
[14] Mathew K.A., Östergård P.R.J., “On hypercube packings, blocking sets and a covering problem”, Inf. Process. Lett., 115:2 (2015), 141–145 | DOI | MR | Zbl
[15] Mathew K.A., Östergård P.R.J., Hypercube packings and their holes, Preprint, Aalto Univ., Aalto, 2014 http://users.aalto.fi/~pat/papers/hole.pdf
[16] Mathew K.A., Östergård P.R.J., Popa A., “Enumerating cube tilings”, Discrete Comput. Geom., 50:4 (2013), 1112–1122 | DOI | MR | Zbl
[17] Perron O., “Über lückenlose Ausfüllung des $n$-dimensionalen Raumes durch kongruente Würfel. I, II”, Math. Z., 46 (1940), 1–26 | DOI | MR
[18] Poyarkov A.P., “Random packings by cubes”, J. Math. Sci., 146:1 (2007), 5577–5583 | DOI | MR | Zbl
[19] Rényi A., “On a one-dimensional problem concerning random space-filling”, Publ. math. Inst. Hung. Acad. Sci., 3 (1958), 109–127 | MR
[20] Szabó S., “A reduction of Keller's conjecture”, Period. math. Hung., 17 (1986), 265–277 | DOI | MR | Zbl