New results on torus cube packings and tilings
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 265-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the sequential random packing of integral translates of cubes $[0,N]^n$ into the torus $\mathbb Z^n/2N\mathbb Z^n$. Two particular cases are of special interest: (1) $N=2$, which corresponds to a discrete case of tilings, and (2) $N=\infty$, which corresponds to a case of continuous tilings. Both cases correspond to some special combinatorial structure, and we describe here new developments.
@article{TRSPY_2015_288_a17,
     author = {Mathieu Dutour Sikiri\'c and Yoshiaki Itoh},
     title = {New results on torus cube packings and tilings},
     journal = {Informatics and Automation},
     pages = {265--268},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a17/}
}
TY  - JOUR
AU  - Mathieu Dutour Sikirić
AU  - Yoshiaki Itoh
TI  - New results on torus cube packings and tilings
JO  - Informatics and Automation
PY  - 2015
SP  - 265
EP  - 268
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a17/
LA  - en
ID  - TRSPY_2015_288_a17
ER  - 
%0 Journal Article
%A Mathieu Dutour Sikirić
%A Yoshiaki Itoh
%T New results on torus cube packings and tilings
%J Informatics and Automation
%D 2015
%P 265-268
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a17/
%G en
%F TRSPY_2015_288_a17
Mathieu Dutour Sikirić; Yoshiaki Itoh. New results on torus cube packings and tilings. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 265-268. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a17/

[1] Alspach B., “The wonderful Walecki construction”, Bull. Inst. Comb. Appl., 52 (2008), 7–20 | MR | Zbl

[2] Brink D., “The inverse football pool problem”, J. Integer Seq., 14 (2011), 11 | MR | Zbl

[3] Corrádi K., Szabó S., “A combinatorial approach for Keller's conjecture”, Period. math. Hung., 21 (1990), 95–100 | DOI | MR | Zbl

[4] Debroni J., Eblen J.D., Langston M.A., Myrvold W., Shor P., Weerapurage D., “A complete resolution of the Keller maximum clique problem”, Proc. Twenty-Second Annual ACM–SIAM Symposium on Discrete Algorithms (SODA'11), Soc. Ind. Appl. Math., Philadelphia, PA, 2011, 129–135 | DOI | MR

[5] Dolbilin N., Itoh Y., Poyarkov A., “On random tilings and packings of space by cubes”, Proc. COE Workshop on Sphere Packings, Kyushu Univ., Fukuoka, 2005, 70–79

[6] Dutour Sikirić M., Itoh Y., “Combinatorial cube packings in the cube and the torus”, Eur. J. Comb., 31 (2010), 517–534 | DOI | MR | Zbl

[7] Dutour Sikirić M., Itoh Y., Random sequential packing of cubes, World Sci., Hackensack, NJ, 2011 | MR | Zbl

[8] Dutour Sikirić M., Itoh Y., Poyarkov A., “Cube packings, second moment and holes”, Eur. J. Comb., 28 (2007), 715–725 | DOI | MR | Zbl

[9] Itoh Y., Ueda S., “On packing density by a discrete random sequential packing of cubes in a space of $m$ dimensions”, Proc. Inst. Stat. Math., 31 (1983), 65–69 | Zbl

[10] Kaski P., Östergård P.R.J., “There are $1,132,835,421,602,062,347$ nonisomorphic one-factorizations of $K_{14}$”, J. Comb. Des., 17:2 (2009), 147–159 | DOI | MR | Zbl

[11] Keller O.-H., “Über die lückenlose Erfüllung des Raumes mit Würfeln”, J. reine angew. Math., 163 (1930), 231–248 | Zbl

[12] Lagarias J.C., Shor P.W., “Keller's cube-tiling conjecture is false in high dimensions”, Bull. Amer. Math. Soc., 27:2 (1992), 279–283 | DOI | MR | Zbl

[13] Mackey J., “A cube tiling of dimension eight with no facesharing”, Discrete Comput. Geom., 28:2 (2002), 275–279 | DOI | MR | Zbl

[14] Mathew K.A., Östergård P.R.J., “On hypercube packings, blocking sets and a covering problem”, Inf. Process. Lett., 115:2 (2015), 141–145 | DOI | MR | Zbl

[15] Mathew K.A., Östergård P.R.J., Hypercube packings and their holes, Preprint, Aalto Univ., Aalto, 2014 http://users.aalto.fi/~pat/papers/hole.pdf

[16] Mathew K.A., Östergård P.R.J., Popa A., “Enumerating cube tilings”, Discrete Comput. Geom., 50:4 (2013), 1112–1122 | DOI | MR | Zbl

[17] Perron O., “Über lückenlose Ausfüllung des $n$-dimensionalen Raumes durch kongruente Würfel. I, II”, Math. Z., 46 (1940), 1–26 | DOI | MR

[18] Poyarkov A.P., “Random packings by cubes”, J. Math. Sci., 146:1 (2007), 5577–5583 | DOI | MR | Zbl

[19] Rényi A., “On a one-dimensional problem concerning random space-filling”, Publ. math. Inst. Hung. Acad. Sci., 3 (1958), 109–127 | MR

[20] Szabó S., “A reduction of Keller's conjecture”, Period. math. Hung., 17 (1986), 265–277 | DOI | MR | Zbl