$(n,m)$-fold covers of spheres
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 224-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

A well-known consequence of the Borsuk–Ulam theorem is that if the $d$-dimensional sphere $S^d$ is covered with less than $d+2$ open sets, then there is a set containing a pair of antipodal points. In this paper we provide lower and upper bounds on the minimum number of open sets, not containing a pair of antipodal points, needed to cover the $d$-dimensional sphere $n$ times, with the additional property that the northern hemisphere is covered $m>n$ times. We prove that if the open northern hemisphere is to be covered $m$ times, then at least $\lceil(d-1)/2\rceil+n+m$ and at most $d+n+m$ sets are needed. For the case of $n=1$ and $d\ge2$, this number is equal to $d+2$ if $m\le\lfloor d/2\rfloor+1$ and equal to $\lfloor(d-1)/2\rfloor+2+m$ if $m>\lfloor d/2\rfloor+1$. If the closed northern hemisphere is to be covered $m$ times, then $d+2m-1$ sets are needed; this number is also sufficient. We also present results on a related problem of independent interest. We prove that if $S^d$ is covered $n$ times with open sets not containing a pair of antipodal points, then there exists a point that is covered at least $\lceil d/2\rceil+n$ times. Furthermore, we show that there are covers in which no point is covered more than $n+d$ times.
@article{TRSPY_2015_288_a14,
     author = {Imre B\'ar\'any and Ruy Fabila-Monroy and Birgit Vogtenhuber},
     title = {$(n,m)$-fold covers of spheres},
     journal = {Informatics and Automation},
     pages = {224--229},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a14/}
}
TY  - JOUR
AU  - Imre Bárány
AU  - Ruy Fabila-Monroy
AU  - Birgit Vogtenhuber
TI  - $(n,m)$-fold covers of spheres
JO  - Informatics and Automation
PY  - 2015
SP  - 224
EP  - 229
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a14/
LA  - en
ID  - TRSPY_2015_288_a14
ER  - 
%0 Journal Article
%A Imre Bárány
%A Ruy Fabila-Monroy
%A Birgit Vogtenhuber
%T $(n,m)$-fold covers of spheres
%J Informatics and Automation
%D 2015
%P 224-229
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a14/
%G en
%F TRSPY_2015_288_a14
Imre Bárány; Ruy Fabila-Monroy; Birgit Vogtenhuber. $(n,m)$-fold covers of spheres. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 224-229. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a14/

[1] Fan K., “A generalization of Tucker's combinatorial lemma with topological applications”, Ann. Math. Ser. 2, 56 (1952), 431–437 | DOI | MR | Zbl

[2] Gale D., “Neighboring vertices on a convex polyhedron”, Linear inequalities and related systems, Ann. Math. Stud., 38, Princeton Univ. Press, Princeton, NJ, 1956, 255–263 | MR

[3] Izydorek M., Jaworowski J., “Antipodal coincidence for maps of spheres into complexes”, Proc. Amer. Math. Soc., 123:6 (1995), 1947–1950 | DOI | MR | Zbl

[4] Jaworowski J., “Periodic coincidence for maps of spheres”, Kobe J. Math., 17:1 (2000), 21–26 | MR | Zbl

[5] Lusternik L., Schnirelmann L., Méthodes topologiques dans les problèmes variationnels. Part I: Espaces à un nombre fini de dimensions, Hermann, Paris, 1934

[6] Shchepin E.V., “On a problem of L.A. Tumarkin”, Sov. Math. Dokl., 15 (1974), 1024–1026 | Zbl

[7] Simonyi G., Tardos G., “Local chromatic number, Ky Fan's theorem, and circular colorings”, Combinatorica, 26:5 (2006), 587–626 | DOI | MR | Zbl

[8] Stahl S., “Reductions of $n$-fold covers”, Proc. Amer. Math. Soc., 72:2 (1978), 422–424 | MR | Zbl