Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_288_a14, author = {Imre B\'ar\'any and Ruy Fabila-Monroy and Birgit Vogtenhuber}, title = {$(n,m)$-fold covers of spheres}, journal = {Informatics and Automation}, pages = {224--229}, publisher = {mathdoc}, volume = {288}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a14/} }
Imre Bárány; Ruy Fabila-Monroy; Birgit Vogtenhuber. $(n,m)$-fold covers of spheres. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 224-229. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a14/
[1] Fan K., “A generalization of Tucker's combinatorial lemma with topological applications”, Ann. Math. Ser. 2, 56 (1952), 431–437 | DOI | MR | Zbl
[2] Gale D., “Neighboring vertices on a convex polyhedron”, Linear inequalities and related systems, Ann. Math. Stud., 38, Princeton Univ. Press, Princeton, NJ, 1956, 255–263 | MR
[3] Izydorek M., Jaworowski J., “Antipodal coincidence for maps of spheres into complexes”, Proc. Amer. Math. Soc., 123:6 (1995), 1947–1950 | DOI | MR | Zbl
[4] Jaworowski J., “Periodic coincidence for maps of spheres”, Kobe J. Math., 17:1 (2000), 21–26 | MR | Zbl
[5] Lusternik L., Schnirelmann L., Méthodes topologiques dans les problèmes variationnels. Part I: Espaces à un nombre fini de dimensions, Hermann, Paris, 1934
[6] Shchepin E.V., “On a problem of L.A. Tumarkin”, Sov. Math. Dokl., 15 (1974), 1024–1026 | Zbl
[7] Simonyi G., Tardos G., “Local chromatic number, Ky Fan's theorem, and circular colorings”, Combinatorica, 26:5 (2006), 587–626 | DOI | MR | Zbl
[8] Stahl S., “Reductions of $n$-fold covers”, Proc. Amer. Math. Soc., 72:2 (1978), 422–424 | MR | Zbl