Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_288_a12, author = {Michael Baake and Christian Huck}, title = {Ergodic properties of visible lattice points}, journal = {Informatics and Automation}, pages = {184--208}, publisher = {mathdoc}, volume = {288}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a12/} }
Michael Baake; Christian Huck. Ergodic properties of visible lattice points. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 184-208. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a12/
[1] Akin E., The general topology of dynamical systems, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[2] Apostol T.M., Introduction to analytic number theory, Springer, New York, 1976 | MR | Zbl
[3] Baake M., Grimm U., Aperiodic order. V. 1: A mathematical invitation, Cambridge Univ. Press, Cambridge, 2013 | MR
[4] Baake M., Grimm U., Warrington D.H., “Some remarks on the visible points of a lattice”, J. Phys. A: Math. Gen., 27 (1994), 2669–2674 | DOI | MR | Zbl
[5] Baake M., Lenz D., “Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra”, Ergodic Theory Dyn. Syst., 24 (2004), 1867–1893, arXiv: math/0302061 [math.DS] | DOI | MR | Zbl
[6] Baake M., Lenz D., Moody R.V., “Characterization of model sets by dynamical systems”, Ergodic Theory Dyn. Syst., 27 (2007), 341–382, arXiv: math/0511648 [math.DS] | DOI | MR | Zbl
[7] Baake M., Lenz D., Richard C., “Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies”, Lett. Math. Phys., 82 (2007), 61–77, arXiv: 0706.1677 [math.DS] | DOI | MR | Zbl
[8] Baake M., Lenz D., van Enter A., “Dynamical versus diffraction spectrum for structures with finite local complexity”, Ergodic Theory Dyn. Syst., 2014, arXiv: 1307.7518 [math.DS] | DOI | MR
[9] Baake M., Moody R.V., “Similarity submodules and root systems in four dimensions”, Can. J. Math., 51 (1999), 1258–1276, arXiv: math/9904028 [math.MG] | DOI | MR | Zbl
[10] Baake M., Moody R.V., Pleasants P.A.B., “Diffraction from visible lattice points and $k$th power free integers”, Discrete Math., 221 (2000), 3–42, arXiv: math/9906132 [math.MG] | DOI | MR | Zbl
[11] Berg C., Forst G., Potential theory on locally compact Abelian groups, Springer, Berlin, 1975 | MR | Zbl
[12] Borevich Z.I., Shafarevich I.R., Number theory, Acad. Press, New York, 1966 | MR | Zbl
[13] Cellarosi F., Sinai Ya.G., “Ergodic properties of square-free numbers”, J. Eur. Math. Soc., 15 (2013), 1343–1374, arXiv: 1112.4691 [math.DS] | DOI | MR | Zbl
[14] Cellarosi F., Vinogradov I., “Ergodic properties of $k$-free integers in number fields”, J. Mod. Dyn., 7 (2013), 461–488, arXiv: 1304.0214 [math.DS] | DOI | MR | Zbl
[15] Danzer L., Dolbilin N., “Delone graphs; some species and local rules”, The mathematics of long-range aperiodic order, NATO Adv. Stud. Inst. C: Math. Phys. Sci., 489, eds. R.V. Moody, Kluwer, Dordrecht, 1997, 85–114 | MR | Zbl
[16] Denker M., Grillenberger C., Sigmund K., Ergodic theory on compact spaces, Lect. Notes Math., 527, Springer, Berlin, 1976 | MR | Zbl
[17] Dolbilin N.P., “Boris Nikolaevich Delone (Delaunay): Life and work”, Proc. Steklov Inst. Math., 275 (2011), 1–14 | DOI | MR | Zbl
[18] El Abdalaoui E.H., Lemańczyk M., de la Rue T., “A dynamical point of view on the set of $\mathscr B$-free integers”, Int. Math. Res. Not., 2014, arXiv: 1311.3752 [math.DS] | DOI
[19] Furstenberg H., “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. Syst. Theory, 1 (1967), 1–49 | DOI | MR | Zbl
[20] Glasner E., Ergodic theory via joinings, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[21] Halmos P.R., von Neumann J., “Operator methods in classical mechanics. II”, Ann. Math. Ser. 2, 43 (1942), 332–350 | DOI | MR | Zbl
[22] Herzog F., Stewart B.M., “Patterns of visible and nonvisible lattice points”, Amer. Math. Mon., 78 (1971), 487–496 | DOI | MR | Zbl
[23] Hua L.K., Introduction to number theory, Springer, Berlin, 1982 | MR | Zbl
[24] Huck C., Baake M., “Dynamical properties of $k$-free lattice points”, Acta phys. Pol. A, 126 (2014), 482–485, arXiv: 1402.2202 [math.DS] | DOI
[25] Kułaga-Przymus J., Lemańczyk M., Weiss B., On invariant measures for $\mathscr B$-free systems, E-print, 2014, arXiv: 1406.3745 [math.DS]
[26] Mirsky L., “Note on an asymptotic formula connected with $r$-free integers”, Q. J. Math., 18 (1947), 178–182 | DOI | MR | Zbl
[27] Mirsky L., “Arithmetical pattern problems relating to divisibility by $r$th powers”, Proc. London Math. Soc. Ser. 2, 50 (1949), 497–508 | DOI | MR | Zbl
[28] Moody R.V., “Uniform distribution in model sets”, Can. Math. Bull., 45:1 (2002), 123–130 | DOI | MR | Zbl
[29] Mosseri R., “Visible points in a lattice”, J. Phys. A: Math. Gen., 25 (1992), L25–L29 | DOI | MR | Zbl
[30] Neukirch J., Algebraic number theory, Springer, Berlin, 1999 | MR | Zbl
[31] Pleasants P.A.B., Huck C., “Entropy and diffraction of the $k$-free points in $n$-dimensional lattices”, Discrete Comput. Geom., 50 (2013), 39–68, arXiv: 1112.1629 [math.MG] | DOI | MR | Zbl
[32] Rudin W., Fourier analysis on groups, Interscience, New York, 1962 | MR | Zbl
[33] Sarnak P., Three lectures on the Möbius function randomness and dynamics. Lecture 1, Preprint, Inst. Adv. Stud., Princeton, NJ, 2010 http://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf
[34] Schroeder M.R., “A simple function and its Fourier transform”, Math. Intell., 4 (1982), 158–161 | DOI | MR
[35] Schroeder M.R., Number theory in science and communication: With applications in cryptography, physics, digital information, computing, and self-similarity, 3rd ed., Springer, Berlin, 1997 | MR | Zbl
[36] Shechtman D., Blech I., Gratias D., Cahn J.W., “Metallic phase with long-range orientational order and no translational symmetry”, Phys. Rev. Lett., 53:20 (1984), 1951–1954 | DOI
[37] Sing B., Pisot substitutions and beyond, PhD thesis, Univ. Bielefeld, Bielefeld, 2006 http://bieson.ub.uni-bielefeld.de/volltexte/2007/1155/
[38] Solomyak B., “Dynamics of self-similar tilings”, Ergodic Theory Dyn. Syst., 17 (1997), 695–738 ; 19 (1999), 1685 | DOI | MR | Zbl | DOI | MR
[39] Steurer W., “Twenty years of structure research on quasicrystals. I: Pentagonal, octagonal, decagonal and dodecagonal quasicrystals”, Z. Kristallogr., 219 (2004), 391–446 | DOI | MR | Zbl
[40] von Neumann J., “Zur Operatorenmethode in der klassischen Mechanik”, Ann. Math. Ser. 2, 33 (1932), 587–642 | DOI | MR
[41] Walters P., An introduction to ergodic theory, Springer, New York, 2000 | MR | Zbl
[42] Weiss B., Single orbit dynamics, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl