Ergodic properties of visible lattice points
Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 184-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, the dynamical and spectral properties of square-free integers, visible lattice points and various generalisations have received increased attention. One reason is the connection of one-dimensional examples such as $\mathscr B$-free numbers with Sarnak's conjecture on the “randomness” of the Möbius function; another is the explicit computability of correlation functions as well as eigenfunctions for these systems together with intrinsic ergodicity properties. Here, we summarise some of the results, with focus on spectral and dynamical aspects, and expand a little on the implications for mathematical diffraction theory.
@article{TRSPY_2015_288_a12,
     author = {Michael Baake and Christian Huck},
     title = {Ergodic properties of visible lattice points},
     journal = {Informatics and Automation},
     pages = {184--208},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a12/}
}
TY  - JOUR
AU  - Michael Baake
AU  - Christian Huck
TI  - Ergodic properties of visible lattice points
JO  - Informatics and Automation
PY  - 2015
SP  - 184
EP  - 208
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a12/
LA  - en
ID  - TRSPY_2015_288_a12
ER  - 
%0 Journal Article
%A Michael Baake
%A Christian Huck
%T Ergodic properties of visible lattice points
%J Informatics and Automation
%D 2015
%P 184-208
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a12/
%G en
%F TRSPY_2015_288_a12
Michael Baake; Christian Huck. Ergodic properties of visible lattice points. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 184-208. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a12/

[1] Akin E., The general topology of dynamical systems, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[2] Apostol T.M., Introduction to analytic number theory, Springer, New York, 1976 | MR | Zbl

[3] Baake M., Grimm U., Aperiodic order. V. 1: A mathematical invitation, Cambridge Univ. Press, Cambridge, 2013 | MR

[4] Baake M., Grimm U., Warrington D.H., “Some remarks on the visible points of a lattice”, J. Phys. A: Math. Gen., 27 (1994), 2669–2674 | DOI | MR | Zbl

[5] Baake M., Lenz D., “Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra”, Ergodic Theory Dyn. Syst., 24 (2004), 1867–1893, arXiv: math/0302061 [math.DS] | DOI | MR | Zbl

[6] Baake M., Lenz D., Moody R.V., “Characterization of model sets by dynamical systems”, Ergodic Theory Dyn. Syst., 27 (2007), 341–382, arXiv: math/0511648 [math.DS] | DOI | MR | Zbl

[7] Baake M., Lenz D., Richard C., “Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies”, Lett. Math. Phys., 82 (2007), 61–77, arXiv: 0706.1677 [math.DS] | DOI | MR | Zbl

[8] Baake M., Lenz D., van Enter A., “Dynamical versus diffraction spectrum for structures with finite local complexity”, Ergodic Theory Dyn. Syst., 2014, arXiv: 1307.7518 [math.DS] | DOI | MR

[9] Baake M., Moody R.V., “Similarity submodules and root systems in four dimensions”, Can. J. Math., 51 (1999), 1258–1276, arXiv: math/9904028 [math.MG] | DOI | MR | Zbl

[10] Baake M., Moody R.V., Pleasants P.A.B., “Diffraction from visible lattice points and $k$th power free integers”, Discrete Math., 221 (2000), 3–42, arXiv: math/9906132 [math.MG] | DOI | MR | Zbl

[11] Berg C., Forst G., Potential theory on locally compact Abelian groups, Springer, Berlin, 1975 | MR | Zbl

[12] Borevich Z.I., Shafarevich I.R., Number theory, Acad. Press, New York, 1966 | MR | Zbl

[13] Cellarosi F., Sinai Ya.G., “Ergodic properties of square-free numbers”, J. Eur. Math. Soc., 15 (2013), 1343–1374, arXiv: 1112.4691 [math.DS] | DOI | MR | Zbl

[14] Cellarosi F., Vinogradov I., “Ergodic properties of $k$-free integers in number fields”, J. Mod. Dyn., 7 (2013), 461–488, arXiv: 1304.0214 [math.DS] | DOI | MR | Zbl

[15] Danzer L., Dolbilin N., “Delone graphs; some species and local rules”, The mathematics of long-range aperiodic order, NATO Adv. Stud. Inst. C: Math. Phys. Sci., 489, eds. R.V. Moody, Kluwer, Dordrecht, 1997, 85–114 | MR | Zbl

[16] Denker M., Grillenberger C., Sigmund K., Ergodic theory on compact spaces, Lect. Notes Math., 527, Springer, Berlin, 1976 | MR | Zbl

[17] Dolbilin N.P., “Boris Nikolaevich Delone (Delaunay): Life and work”, Proc. Steklov Inst. Math., 275 (2011), 1–14 | DOI | MR | Zbl

[18] El Abdalaoui E.H., Lemańczyk M., de la Rue T., “A dynamical point of view on the set of $\mathscr B$-free integers”, Int. Math. Res. Not., 2014, arXiv: 1311.3752 [math.DS] | DOI

[19] Furstenberg H., “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. Syst. Theory, 1 (1967), 1–49 | DOI | MR | Zbl

[20] Glasner E., Ergodic theory via joinings, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[21] Halmos P.R., von Neumann J., “Operator methods in classical mechanics. II”, Ann. Math. Ser. 2, 43 (1942), 332–350 | DOI | MR | Zbl

[22] Herzog F., Stewart B.M., “Patterns of visible and nonvisible lattice points”, Amer. Math. Mon., 78 (1971), 487–496 | DOI | MR | Zbl

[23] Hua L.K., Introduction to number theory, Springer, Berlin, 1982 | MR | Zbl

[24] Huck C., Baake M., “Dynamical properties of $k$-free lattice points”, Acta phys. Pol. A, 126 (2014), 482–485, arXiv: 1402.2202 [math.DS] | DOI

[25] Kułaga-Przymus J., Lemańczyk M., Weiss B., On invariant measures for $\mathscr B$-free systems, E-print, 2014, arXiv: 1406.3745 [math.DS]

[26] Mirsky L., “Note on an asymptotic formula connected with $r$-free integers”, Q. J. Math., 18 (1947), 178–182 | DOI | MR | Zbl

[27] Mirsky L., “Arithmetical pattern problems relating to divisibility by $r$th powers”, Proc. London Math. Soc. Ser. 2, 50 (1949), 497–508 | DOI | MR | Zbl

[28] Moody R.V., “Uniform distribution in model sets”, Can. Math. Bull., 45:1 (2002), 123–130 | DOI | MR | Zbl

[29] Mosseri R., “Visible points in a lattice”, J. Phys. A: Math. Gen., 25 (1992), L25–L29 | DOI | MR | Zbl

[30] Neukirch J., Algebraic number theory, Springer, Berlin, 1999 | MR | Zbl

[31] Pleasants P.A.B., Huck C., “Entropy and diffraction of the $k$-free points in $n$-dimensional lattices”, Discrete Comput. Geom., 50 (2013), 39–68, arXiv: 1112.1629 [math.MG] | DOI | MR | Zbl

[32] Rudin W., Fourier analysis on groups, Interscience, New York, 1962 | MR | Zbl

[33] Sarnak P., Three lectures on the Möbius function randomness and dynamics. Lecture 1, Preprint, Inst. Adv. Stud., Princeton, NJ, 2010 http://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf

[34] Schroeder M.R., “A simple function and its Fourier transform”, Math. Intell., 4 (1982), 158–161 | DOI | MR

[35] Schroeder M.R., Number theory in science and communication: With applications in cryptography, physics, digital information, computing, and self-similarity, 3rd ed., Springer, Berlin, 1997 | MR | Zbl

[36] Shechtman D., Blech I., Gratias D., Cahn J.W., “Metallic phase with long-range orientational order and no translational symmetry”, Phys. Rev. Lett., 53:20 (1984), 1951–1954 | DOI

[37] Sing B., Pisot substitutions and beyond, PhD thesis, Univ. Bielefeld, Bielefeld, 2006 http://bieson.ub.uni-bielefeld.de/volltexte/2007/1155/

[38] Solomyak B., “Dynamics of self-similar tilings”, Ergodic Theory Dyn. Syst., 17 (1997), 695–738 ; 19 (1999), 1685 | DOI | MR | Zbl | DOI | MR

[39] Steurer W., “Twenty years of structure research on quasicrystals. I: Pentagonal, octagonal, decagonal and dodecagonal quasicrystals”, Z. Kristallogr., 219 (2004), 391–446 | DOI | MR | Zbl

[40] von Neumann J., “Zur Operatorenmethode in der klassischen Mechanik”, Ann. Math. Ser. 2, 33 (1932), 587–642 | DOI | MR

[41] Walters P., An introduction to ergodic theory, Springer, New York, 2000 | MR | Zbl

[42] Weiss B., Single orbit dynamics, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl