Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_288_a1, author = {A. A. Aizenberg and M. Masuda and Seonjeong Park and Haozhi Zeng}, title = {Toric origami structures on quasitoric manifolds}, journal = {Informatics and Automation}, pages = {16--37}, publisher = {mathdoc}, volume = {288}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a1/} }
TY - JOUR AU - A. A. Aizenberg AU - M. Masuda AU - Seonjeong Park AU - Haozhi Zeng TI - Toric origami structures on quasitoric manifolds JO - Informatics and Automation PY - 2015 SP - 16 EP - 37 VL - 288 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a1/ LA - ru ID - TRSPY_2015_288_a1 ER -
A. A. Aizenberg; M. Masuda; Seonjeong Park; Haozhi Zeng. Toric origami structures on quasitoric manifolds. Informatics and Automation, Geometry, topology, and applications, Tome 288 (2015), pp. 16-37. http://geodesic.mathdoc.fr/item/TRSPY_2015_288_a1/
[1] Ayzenberg A., Buchstaber numbers and classical invariants of simplicial complexes, E-print, 2014, arXiv: 1402.3663 [math.CO]
[2] Ayzenberg A., Masuda M., Park S., Zeng H., Cohomology of toric origami manifolds with acyclic proper faces, E-print, 2014, arXiv: 1407.0764 [math.AT]
[3] Bukhshtaber V.M., Panov T.E., “Kombinatorika simplitsialno kletochnykh kompleksov i toricheskie deistviya”, Tr. MIAN, 247, 2004, 41–58 | MR | Zbl
[4] Buchstaber V.M., Panov T.E., Toric topology, E-print, 2012, arXiv: 1210.2368 [math.AT] | MR
[5] Buchstaber V.M., Panov T.E., Ray N., “Spaces of polytopes and cobordism of quasitoric manifolds”, Moscow Math. J., 7:2 (2007), 219–242 | MR | Zbl
[6] Cannas da Silva A., Guillemin V., Pires A.R., “Symplectic origami”, Int. Math. Res. Not., 2011:18 (2011), 4252–4293, arXiv: 0909.4065 [math.SG] | MR | Zbl
[7] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[8] Delaunay C., “On hyperbolicity of toric real threefolds”, Int. Math. Res. Not., 2005:51 (2005), 3191–3201 | DOI | MR | Zbl
[9] Delzant T., “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. math. France., 116 (1988), 315–339 | MR | Zbl
[10] Djidjev H.N., “On the problem of partitioning planar graphs”, SIAM. J. Algebraic Discrete Methods, 3:2 (1982), 229–240 | DOI | MR | Zbl
[11] Erokhovets N., Buchstaber invariant of simple polytopes, E-print, 2009, arXiv: 0908.3407 [math.AT]
[12] Holm T.S., Pires A.R., “The topology of toric origami manifolds”, Math. Res. Lett., 20:5 (2013), 885–906, arXiv: 1211.6435 [math.SG] | DOI | MR | Zbl
[13] Le Gall J.-F., “Large random planar maps and their scaling limits”, Proc. 5th Eur. Congr. Math., Amsterdam, 2008, Eur. Math. Soc., Zürich, 2010, 253–276 | DOI | MR | Zbl
[14] Le Gall J.-F., “Uniqueness and universality of the Brownian map”, Ann. Probab., 41:4 (2013), 2880–2960, arXiv: 1105.4842 [math.PR] | DOI | MR | Zbl
[15] Le Gall J.-F., Paulin F., “Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere”, Geom. Funct. Anal., 18 (2008), 893–918, arXiv: math/0612315 [math.PR] | DOI | MR | Zbl
[16] Lü Z., Panov T., “Moment–angle complexes from simplicial posets”, Cent. Eur. J. Math., 9:4 (2011), 715–730, arXiv: 0912.2219 [math.AT] | DOI | MR | Zbl
[17] Masuda M., Park S., “Toric origami manifolds and multi-fans”, Tr. MIAN, 286, 2013, 331–346, arXiv: 1305.6347 [math.SG]
[18] Oda T., Convex bodies and algebraic geometry: An introduction to the theory of toric varieties, Springer, Berlin, 1988 | MR | Zbl
[19] Osserman R., “The isoperimetric inequality”, Bull. Amer. Math. Soc., 84:6 (1978), 1182–1238 | DOI | MR | Zbl
[20] Yoshida T., “Local torus actions modeled on the standard representation”, Adv. Math., 227:5 (2011), 1914–1955 | DOI | MR | Zbl
[21] Ziegler G.M., Lectures on polytopes, Springer, New York, 2007 | MR