Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2014_287_a5, author = {Eugene A. Feinberg and Pavlo O. Kasyanov and Michael Z. Zgurovsky}, title = {Convergence of probability measures and {Markov} decision models with incomplete information}, journal = {Informatics and Automation}, pages = {103--124}, publisher = {mathdoc}, volume = {287}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a5/} }
TY - JOUR AU - Eugene A. Feinberg AU - Pavlo O. Kasyanov AU - Michael Z. Zgurovsky TI - Convergence of probability measures and Markov decision models with incomplete information JO - Informatics and Automation PY - 2014 SP - 103 EP - 124 VL - 287 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a5/ LA - en ID - TRSPY_2014_287_a5 ER -
%0 Journal Article %A Eugene A. Feinberg %A Pavlo O. Kasyanov %A Michael Z. Zgurovsky %T Convergence of probability measures and Markov decision models with incomplete information %J Informatics and Automation %D 2014 %P 103-124 %V 287 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a5/ %G en %F TRSPY_2014_287_a5
Eugene A. Feinberg; Pavlo O. Kasyanov; Michael Z. Zgurovsky. Convergence of probability measures and Markov decision models with incomplete information. Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 103-124. http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a5/
[1] Aoki M., “Optimal control of partially observable Markovian systems”, J. Franklin Inst., 280:5 (1965), 367–386 | DOI | MR | Zbl
[2] Bäuerle N., Rieder U., Markov decision processes with applications to finance, Springer, Berlin, 2011 | MR | Zbl
[3] Bensoussan A., Stochastic control of partially observable systems, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[4] Bertsekas D.P., Shreve S.E., Stochastic optimal control: The discrete time case, Acad. Press, New York, 1978 | MR | Zbl
[5] Billingsley P., Convergence of probability measures, J. Wiley Sons, New York, 1968 | MR | Zbl
[6] Bogachev V.I., Measure theory, V. 2, Springer, Berlin, 2007 | MR | Zbl
[7] Cohn D.L., Measure theory, Springer, New York, 2013 | MR | Zbl
[8] Dynkin E.B., “Controlled random sequences”, Theory Probab. Appl., 10 (1965), 1–14 | DOI | MR | Zbl
[9] Dynkin E.B., Yushkevich A.A., Controlled Markov processes, Springer, New York, 1979 | MR
[10] Feinberg E.A., Kasyanov P.O., Voorneveld M., “Berge's maximum theorem for noncompact image sets”, J. Math. Anal. Appl., 413:2 (2014), 1040–1046 | DOI | MR
[11] Feinberg E.A., Kasyanov P.O., Zadoianchuk N.V., “Average cost Markov decision processes with weakly continuous transition probabilities”, Math. Oper. Res., 37:4 (2012), 591–607 | DOI | MR | Zbl
[12] Feinberg E.A., Kasyanov P.O., Zadoianchuk N.V., “Berge's theorem for noncompact image sets”, J. Math. Anal. Appl., 397:1 (2013), 255–259 | DOI | MR | Zbl
[13] Feinberg E.A., Kasyanov P.O., Zgurovsky M.Z., “Optimality conditions for total-cost partially observable Markov decision processes”, Proc. 52th IEEE Conf. on Decision and Control and Eur. Control Conf. (Florence (Italy), 2013), IEEE, 2013, 5716–5721.
[14] Feinberg E.A., Kasyanov P.O., Zgurovsky M.Z., Partially observable total-cost Markov decision processes with weakly continuous transition probabilities, E-print, 2014, arXiv: 1401.2168 [math.OC] | MR
[15] Feinberg E.A., Kasyanov P.O., Zgurovsky M.Z., “Optimality conditions for partially observable Markov decision processes”, Continuous and distributed systems: Theory and applications, eds. M.Z. Zgurovsky, V.A. Sadovnichiy, Springer, Cham, 2014, 251–264 | DOI | MR
[16] Hernández-Lerma O., Adaptive Markov control processes, Springer, New York, 1989 | MR | Zbl
[17] Hernández-Lerma O., Lasserre J.B., Discrete-time Markov control processes: Basic optimality criteria, Springer, New York, 1996 | MR
[18] Hinderer K., Foundations of non-stationary dynamic programming with discrete time parameter, Springer, Berlin, 1970 | MR | Zbl
[19] Jacod J., Shiryaev A.N., Limit theorems for stochastic processes, 2nd ed., Springer, Berlin, 2003 | MR
[20] Kabanov Yu.M., Liptser R.Sh., Shiryaev A.N., “Some limit theorems for simple point processes (a martingale approach)”, Stochastics, 3 (1980), 203–216 | DOI | MR | Zbl
[21] Liptser R.Sh., Shiryaev A.N., Statistika sluchainykh protsessov: Nelineinaya filtratsiya i smezhnye voprosy, Nauka, M., 1974 ; Liptser R.Sh., Shiryaev A.N., Statistics of random processes. V. 1: General theory, Springer, New York, 1977 ; Liptser R.Sh., Shiryaev A.N., Statistics of random processes. V. 2: Applications, Springer, New York, 1978 | MR | Zbl | MR | Zbl | MR | Zbl
[22] Rhenius D., “Incomplete information in Markovian decision models”, Ann. Stat., 2:6 (1974), 1327–1334 | DOI | MR | Zbl
[23] Rieder U., “Bayesian dynamic programming”, Adv. Appl. Probab., 7:2 (1975), 330–348 | DOI | MR | Zbl
[24] Sawaragi Y., Yoshikawa T., “Discrete-time Markovian decision processes with incomplete state observation”, Ann. Math. Stat., 41:1 (1970), 78–86 | DOI | MR | Zbl
[25] Shiryaev A.N., “K teorii reshayuschikh funktsii i upravleniyu protsessom nablyudeniya po nepolnym dannym”, Trans. Third Prague Conf. Inf. Theory, Stat. Decis. Funct., Random Processes (Liblice, 1962.), Publ. House Czech. Acad. Sci., Prague, 1964, 657–681; Shiryaev A.N., “On the theory of decision functions and control by observation from incomplete data”, Sel. Transl. Math. Stat. Probab., 6 (1966), 162–188
[26] Shiryaev A.N., “Nekotorye novye rezultaty v teorii upravlyaemykh sluchainykh protsessov”, Trans. Fourth Prague Conf. Inf. Theory, Stat. Decis. Funct., Random Processes (Prague, 1965), Academia, Prague, 1967, 131–203; Shiryaev A.N., “Some new results in the theory of controlled random processes”, Sel. Transl. Math. Stat. Probab., 8 (1970), 49–130 | Zbl
[27] Shiryaev A.N., Probability, 2nd ed., Springer, New York, 1996 | MR
[28] Smallwood R.D., Sondik E.J., “The optimal control of partially observable Markov processes over a finite horizon”, Oper. Res., 21:5 (1973), 1071–1088 | DOI | MR | Zbl
[29] Sondik E.J., “The optimal control of partially observable Markov processes over the infinite horizon: Discounted costs”, Oper. Res., 26:2 (1978), 282–304 | DOI | MR | Zbl
[30] Striebel C., Optimal control of discrete time stochastic systems, Springer, Berlin, 1975 | MR | Zbl
[31] Yushkevich A.A., “Reduction of a controlled Markov model with incomplete data to a problem with complete information in the case of Borel state and control space”, Theory Probab. Appl., 21 (1976), 153–158 | DOI | MR | Zbl