Utility maximisation and utility indifference price for exponential semi-martingale models and HARA utilities
Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 75-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the utility maximisation problem for semi-martingale models and HARA (hyperbolic absolute risk aversion) utilities. Using specific properties of HARA utilities, we reduce the initial maximisation problem to the conditional one, which we solve by applying a dual approach. Then we express the solution of the conditional maximisation problem via conditional information quantities related to HARA utilities, like the Kullback-Leibler information and Hellinger-type integrals. In turn, we express the information quantities in terms of information processes, which is helpful in indifference price calculus. Finally, we give equations for indifference prices. We show that the indifference price for a seller and the minus indifference price for a buyer are risk measures. We apply the results to Black-Scholes models with correlated Brownian motions. Using the identity-in-law technique, we give an explicit expression for information quantities. Then the previous formulas for the indifference price can be applied.
@article{TRSPY_2014_287_a4,
     author = {A. Ellanskaya and L. Vostrikova},
     title = {Utility maximisation and utility indifference price for exponential semi-martingale models and {HARA} utilities},
     journal = {Informatics and Automation},
     pages = {75--102},
     publisher = {mathdoc},
     volume = {287},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a4/}
}
TY  - JOUR
AU  - A. Ellanskaya
AU  - L. Vostrikova
TI  - Utility maximisation and utility indifference price for exponential semi-martingale models and HARA utilities
JO  - Informatics and Automation
PY  - 2014
SP  - 75
EP  - 102
VL  - 287
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a4/
LA  - en
ID  - TRSPY_2014_287_a4
ER  - 
%0 Journal Article
%A A. Ellanskaya
%A L. Vostrikova
%T Utility maximisation and utility indifference price for exponential semi-martingale models and HARA utilities
%J Informatics and Automation
%D 2014
%P 75-102
%V 287
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a4/
%G en
%F TRSPY_2014_287_a4
A. Ellanskaya; L. Vostrikova. Utility maximisation and utility indifference price for exponential semi-martingale models and HARA utilities. Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 75-102. http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a4/

[1] Amendinger J., Becherer D., Schweizer M., “A monetary value for initial information in portfolio optimization”, Finance Stoch., 7:1 (2003), 29–46 | DOI | MR | Zbl

[2] Biagini S., Frittelli M., Grasselli M., “Indifference price with general semimartingales”, Math. Finance, 21:3 (2011), 423–446 | DOI | MR | Zbl

[3] Callegaro G., Jeanblanc M., Zargari B., “Carthaginian enlargement of filtrations”, ESAIM. Probab. Stat., 17 (2013), 550–566 | DOI | MR | Zbl

[4] Cawston S., Vostrikova L., “Lévy preservation and associated properties for $f$-divergence minimal equivalent martingale measures”, Prokhorov and contemporary probability theory, eds. A.N. Shiryaev et al., Springer, Berlin, 2013, 163–196. | DOI | MR | Zbl

[5] Cawston S., Vostrikova L., “An $f$-divergence approach for optimal portfolios in exponential Lévy models”, Inspired by finance: The Musiela Festschrift, eds. Yu. Kabanov et al., Springer, Cham, 2014, 83–101 | DOI | MR

[6] Choulli T., Stricker C., “Minimal entropy–Hellinger martingale measure in incomplete markets”, Math. Finance, 15:3 (2005), 465–490 | DOI | MR | Zbl

[7] Choulli T., Stricker C., Li J., “Minimal Hellinger martingale measures of order $q$”, Finance Stoch., 11:3 (2007), 399–427 | DOI | MR

[8] Delbaen F., Grandits P., Rheinländer T., Samperi D., Schweizer M., Stricker C., “Exponential hedging and entropic penalties”, Math. Finance, 12:2 (2002), 99–123 | DOI | MR | Zbl

[9] Esche F., Schweizer M., “Minimal entropy preserves the Lévy property: how and why”, Stoch. Processes Appl., 115:2 (2005), 299–327 | DOI | MR | Zbl

[10] Gasbarra D., Valkeila E., Vostrikova L., “Enlargement of filtration and additional information in pricing models: Bayesian approach”, From stochastic calculus to mathematical finance, eds. Yu. Kabanov et al., Springer, Berlin, 2006, 257–285 | DOI | MR | Zbl

[11] Goll T., Rüschendorf L., “Minimax and minimal distance martingale measures and their relationship to portfolio optimization”, Finance Stoch., 5:4 (2001), 557–581 | DOI | MR | Zbl

[12] Hubalek F., Sgarra C., “Esscher transforms and the minimal entropy martingale measure for exponential Lévy models”, Quant. Finance, 6:2 (2006), 125–145 | DOI | MR | Zbl

[13] Indifference pricing: Theory and applications, ed. R. Carmona, Princeton Univ. Press, Princeton, NJ, 2009 | MR

[14] Jacod J., Calcul stochastique et problèmes de martingales, Lect. Notes Math., 714, Springer, Berlin, 1979 | MR | Zbl

[15] Jacod J., “Grossissement initial, hypothèse (H$'$) et théorème de Girsanov”, Grossissements de filtrations: exemples et applications: Séminaire de calcul stochastique 1982/83. Univ. Paris VI, Lect. Notes Math., 1118, eds. T. Jeulin, M. Yor, Springer, Berlin, 1985, 15–35 | DOI | MR

[16] Jacod J., Shiryaev A.N., Limit theorems for stochastic processes, Springer, Berlin, 2003 | MR

[17] Kolomietz E.I., “Relations between triplets of local characteristics of semimartingales”, Russ. Math. Surv., 39:4 (1984), 123–124 | DOI | MR | Zbl

[18] Kramkov D., Sîrbu M., “Asymptotic analysis of utility-based hedging strategies for small number of contingent claims”, Stoch. Processes Appl., 117:11 (2007), 1606–1620 | DOI | MR | Zbl

[19] Mania M., Schweizer M., “Dynamic exponential utility indifference valuation”, Ann. Appl. Probab., 15:3 (2005), 2113–2143 | DOI | MR | Zbl

[20] Miyahara Y., “Minimal entropy martingale measures of jump type price processes in incomplete assets markets”, Asia-Pac. Financ. Mark., 6:2 (1999), 97–113 | DOI | Zbl

[21] Musiela M., Zariphopoulou T., Indifference prices and related measures, Tech. Rep., Univ. Texas, Austin, 2001

[22] Musiela M., Zariphopoulou T., “An example of indifference prices under exponential preferences”, Finance Stoch., 8:2 (2004), 229–239 | DOI | MR | Zbl

[23] Ritter K., “Duality for nonlinear programming in a Banach space”, SIAM J. Appl. Math., 15:2 (1967), 294–302 | DOI | MR | Zbl

[24] Rouge R., El Karoui N., “Pricing via utility maximization and entropy”, Math. Finance, 10:2 (2000), 259–276 | DOI | MR | Zbl

[25] Shiryaev A.N., “Absolute continuity and singularity of probability measures in functional spaces”, Proc. Int. Congr. Math., V. 1 (Helsinki, 1978), Finn. Acad. Sci., Helsinki, 1980, 209–225 | MR

[26] Stricker C., Yor M., “Calcul stochastique dépendant d'un paramètre”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 45 (1978), 109–133 | DOI | MR | Zbl

[27] Valkeila E., Vostrikova L., “An integral representation for the Hellinger distance”, Math. Scand., 58 (1986), 239–254 | MR | Zbl