Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2014_287_a4, author = {A. Ellanskaya and L. Vostrikova}, title = {Utility maximisation and utility indifference price for exponential semi-martingale models and {HARA} utilities}, journal = {Informatics and Automation}, pages = {75--102}, publisher = {mathdoc}, volume = {287}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a4/} }
TY - JOUR AU - A. Ellanskaya AU - L. Vostrikova TI - Utility maximisation and utility indifference price for exponential semi-martingale models and HARA utilities JO - Informatics and Automation PY - 2014 SP - 75 EP - 102 VL - 287 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a4/ LA - en ID - TRSPY_2014_287_a4 ER -
%0 Journal Article %A A. Ellanskaya %A L. Vostrikova %T Utility maximisation and utility indifference price for exponential semi-martingale models and HARA utilities %J Informatics and Automation %D 2014 %P 75-102 %V 287 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a4/ %G en %F TRSPY_2014_287_a4
A. Ellanskaya; L. Vostrikova. Utility maximisation and utility indifference price for exponential semi-martingale models and HARA utilities. Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 75-102. http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a4/
[1] Amendinger J., Becherer D., Schweizer M., “A monetary value for initial information in portfolio optimization”, Finance Stoch., 7:1 (2003), 29–46 | DOI | MR | Zbl
[2] Biagini S., Frittelli M., Grasselli M., “Indifference price with general semimartingales”, Math. Finance, 21:3 (2011), 423–446 | DOI | MR | Zbl
[3] Callegaro G., Jeanblanc M., Zargari B., “Carthaginian enlargement of filtrations”, ESAIM. Probab. Stat., 17 (2013), 550–566 | DOI | MR | Zbl
[4] Cawston S., Vostrikova L., “Lévy preservation and associated properties for $f$-divergence minimal equivalent martingale measures”, Prokhorov and contemporary probability theory, eds. A.N. Shiryaev et al., Springer, Berlin, 2013, 163–196. | DOI | MR | Zbl
[5] Cawston S., Vostrikova L., “An $f$-divergence approach for optimal portfolios in exponential Lévy models”, Inspired by finance: The Musiela Festschrift, eds. Yu. Kabanov et al., Springer, Cham, 2014, 83–101 | DOI | MR
[6] Choulli T., Stricker C., “Minimal entropy–Hellinger martingale measure in incomplete markets”, Math. Finance, 15:3 (2005), 465–490 | DOI | MR | Zbl
[7] Choulli T., Stricker C., Li J., “Minimal Hellinger martingale measures of order $q$”, Finance Stoch., 11:3 (2007), 399–427 | DOI | MR
[8] Delbaen F., Grandits P., Rheinländer T., Samperi D., Schweizer M., Stricker C., “Exponential hedging and entropic penalties”, Math. Finance, 12:2 (2002), 99–123 | DOI | MR | Zbl
[9] Esche F., Schweizer M., “Minimal entropy preserves the Lévy property: how and why”, Stoch. Processes Appl., 115:2 (2005), 299–327 | DOI | MR | Zbl
[10] Gasbarra D., Valkeila E., Vostrikova L., “Enlargement of filtration and additional information in pricing models: Bayesian approach”, From stochastic calculus to mathematical finance, eds. Yu. Kabanov et al., Springer, Berlin, 2006, 257–285 | DOI | MR | Zbl
[11] Goll T., Rüschendorf L., “Minimax and minimal distance martingale measures and their relationship to portfolio optimization”, Finance Stoch., 5:4 (2001), 557–581 | DOI | MR | Zbl
[12] Hubalek F., Sgarra C., “Esscher transforms and the minimal entropy martingale measure for exponential Lévy models”, Quant. Finance, 6:2 (2006), 125–145 | DOI | MR | Zbl
[13] Indifference pricing: Theory and applications, ed. R. Carmona, Princeton Univ. Press, Princeton, NJ, 2009 | MR
[14] Jacod J., Calcul stochastique et problèmes de martingales, Lect. Notes Math., 714, Springer, Berlin, 1979 | MR | Zbl
[15] Jacod J., “Grossissement initial, hypothèse (H$'$) et théorème de Girsanov”, Grossissements de filtrations: exemples et applications: Séminaire de calcul stochastique 1982/83. Univ. Paris VI, Lect. Notes Math., 1118, eds. T. Jeulin, M. Yor, Springer, Berlin, 1985, 15–35 | DOI | MR
[16] Jacod J., Shiryaev A.N., Limit theorems for stochastic processes, Springer, Berlin, 2003 | MR
[17] Kolomietz E.I., “Relations between triplets of local characteristics of semimartingales”, Russ. Math. Surv., 39:4 (1984), 123–124 | DOI | MR | Zbl
[18] Kramkov D., Sîrbu M., “Asymptotic analysis of utility-based hedging strategies for small number of contingent claims”, Stoch. Processes Appl., 117:11 (2007), 1606–1620 | DOI | MR | Zbl
[19] Mania M., Schweizer M., “Dynamic exponential utility indifference valuation”, Ann. Appl. Probab., 15:3 (2005), 2113–2143 | DOI | MR | Zbl
[20] Miyahara Y., “Minimal entropy martingale measures of jump type price processes in incomplete assets markets”, Asia-Pac. Financ. Mark., 6:2 (1999), 97–113 | DOI | Zbl
[21] Musiela M., Zariphopoulou T., Indifference prices and related measures, Tech. Rep., Univ. Texas, Austin, 2001
[22] Musiela M., Zariphopoulou T., “An example of indifference prices under exponential preferences”, Finance Stoch., 8:2 (2004), 229–239 | DOI | MR | Zbl
[23] Ritter K., “Duality for nonlinear programming in a Banach space”, SIAM J. Appl. Math., 15:2 (1967), 294–302 | DOI | MR | Zbl
[24] Rouge R., El Karoui N., “Pricing via utility maximization and entropy”, Math. Finance, 10:2 (2000), 259–276 | DOI | MR | Zbl
[25] Shiryaev A.N., “Absolute continuity and singularity of probability measures in functional spaces”, Proc. Int. Congr. Math., V. 1 (Helsinki, 1978), Finn. Acad. Sci., Helsinki, 1980, 209–225 | MR
[26] Stricker C., Yor M., “Calcul stochastique dépendant d'un paramètre”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 45 (1978), 109–133 | DOI | MR | Zbl
[27] Valkeila E., Vostrikova L., “An integral representation for the Hellinger distance”, Math. Scand., 58 (1986), 239–254 | MR | Zbl