New approach to the segmentation problem for time series of arbitrary nature
Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 61-74

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of splitting time series of arbitrary nature (stochastic, deterministic, or mixed) into segments generated by the same mechanism. We introduce a new concept of $\in$-complexity of continuous functions and give a characterization of this quantity for Hölder continuous functions. On the basis of the $\in$-complexity parameters, we propose a new technique for the segmentation of time series that does not require any a priori knowledge of how these series were generated.
@article{TRSPY_2014_287_a3,
     author = {B. S. Darhovsky and A. Piryatinska},
     title = {New approach to the segmentation problem for time series of arbitrary nature},
     journal = {Informatics and Automation},
     pages = {61--74},
     publisher = {mathdoc},
     volume = {287},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a3/}
}
TY  - JOUR
AU  - B. S. Darhovsky
AU  - A. Piryatinska
TI  - New approach to the segmentation problem for time series of arbitrary nature
JO  - Informatics and Automation
PY  - 2014
SP  - 61
EP  - 74
VL  - 287
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a3/
LA  - ru
ID  - TRSPY_2014_287_a3
ER  - 
%0 Journal Article
%A B. S. Darhovsky
%A A. Piryatinska
%T New approach to the segmentation problem for time series of arbitrary nature
%J Informatics and Automation
%D 2014
%P 61-74
%V 287
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a3/
%G ru
%F TRSPY_2014_287_a3
B. S. Darhovsky; A. Piryatinska. New approach to the segmentation problem for time series of arbitrary nature. Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 61-74. http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a3/