On some functional inequalities for skew Brownian motion
Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 9-20

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Poincaré and logarithmic Sobolev inequalities. We provide several constructions of skew Brownian motion; this is an example of diffusion with singular drift interesting from different points of view. We obtain inequalities for skew Brownian motion that naturally generalize the Gaussian case. It turns out that for skew Brownian motion the estimates depend on the local time of the process.
@article{TRSPY_2014_287_a1,
     author = {A. T. Abakirova},
     title = {On some functional inequalities for skew {Brownian} motion},
     journal = {Informatics and Automation},
     pages = {9--20},
     publisher = {mathdoc},
     volume = {287},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a1/}
}
TY  - JOUR
AU  - A. T. Abakirova
TI  - On some functional inequalities for skew Brownian motion
JO  - Informatics and Automation
PY  - 2014
SP  - 9
EP  - 20
VL  - 287
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a1/
LA  - ru
ID  - TRSPY_2014_287_a1
ER  - 
%0 Journal Article
%A A. T. Abakirova
%T On some functional inequalities for skew Brownian motion
%J Informatics and Automation
%D 2014
%P 9-20
%V 287
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a1/
%G ru
%F TRSPY_2014_287_a1
A. T. Abakirova. On some functional inequalities for skew Brownian motion. Informatics and Automation, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 9-20. http://geodesic.mathdoc.fr/item/TRSPY_2014_287_a1/